AS Biology B

Specification

Pearson Edexcel Level 3 Advanced Subsidiary GCE in Biology B (8BI0)

First teaching from September 2015

First certification from 2016

Issue 2
Edexcel, BTEC and LCCI qualifications

Edexcel, BTEC and LCCI qualifications are awarded by Pearson, the UK’s largest awarding body offering academic and vocational qualifications that are globally recognised and benchmarked. For further information, please visit our qualification websites at www.edexcel.com, www.btec.co.uk or www.lcci.org.uk. Alternatively, you can get in touch with us using the details on our contact us page at qualifications.pearson.com/contactus

About Pearson

Pearson is the world’s leading learning company, with 40,000 employees in more than 70 countries working to help people of all ages to make measurable progress in their lives through learning. We put the learner at the centre of everything we do, because wherever learning flourishes, so do people. Find out more about how we can help you and your learners at qualifications.pearson.com

This specification is Issue 2. Key changes are sidelined. We will inform centres of any changes to this issue. The latest issue can be found on the Pearson website: qualifications.pearson.com

References to third party material made in this specification are made in good faith. Pearson does not endorse, approve or accept responsibility for the content of materials, which may be subject to change, or any opinions expressed therein. (Material may include textbooks, journals, magazines and other publications and websites.)

All information in this specification is correct at time of publication.

Original origami artwork: Mark Bolitho
Origami photography: Pearson Education Ltd/Naki Kouyioumtzis

ISBN 978 1 446 93091 5
All the material in this publication is copyright
© Pearson Education Limited 2016
From Pearson’s Expert Panel for World Class Qualifications

“The reform of the qualifications system in England is a profoundly important change to the education system. Teachers need to know that the new qualifications will assist them in helping their learners make progress in their lives.

When these changes were first proposed we were approached by Pearson to join an 'Expert Panel' that would advise them on the development of the new qualifications. We were chosen, either because of our expertise in the UK education system, or because of our experience in reforming qualifications in other systems around the world as diverse as Singapore, Hong Kong, Australia and a number of countries across Europe.

We have guided Pearson through what we judge to be a rigorous qualification development process that has included:

- Extensive international comparability of subject content against the highest-performing jurisdictions in the world
- Benchmarking assessments against UK and overseas providers to ensure that they are at the right level of demand
- Establishing External Subject Advisory Groups, drawing on independent subject-specific expertise to challenge and validate our qualifications
- Subjecting the final qualifications to scrutiny against the DfE content and Ofqual accreditation criteria in advance of submission.

Importantly, we have worked to ensure that the content and learning is future oriented. The design has been guided by what is called an ‘Efficacy Framework’, meaning learner outcomes have been at the heart of this development throughout.

We understand that ultimately it is excellent teaching that is the key factor to a learner’s success in education. As a result of our work as a panel we are confident that we have supported the development of qualifications that are outstanding for their coherence, thoroughness and attention to detail and can be regarded as representing world-class best practice.”

Sir Michael Barber (Chair)
Chief Education Advisor, Pearson plc

Professor Sing Kong Lee
Director, National Institute of Education, Singapore

Bahram Bekhradnia
President, Higher Education Policy Institute

Professor Jonathan Osborne
Stanford University

Dame Sally Coates
Principal, Burlington Danes Academy

Professor Dr Ursula Renold
Federal Institute of Technology, Switzerland

Professor Robin Coningham
Pro-Vice Chancellor, University of Durham

Professor Bob Schwartz
Harvard Graduate School of Education

Dr Peter Hill
Former Chief Executive ACARA
Introduction

The Pearson Edexcel Level 3 Advanced Subsidiary GCE in Biology B is designed for use in schools and colleges. It is part of a suite of GCE qualifications offered by Pearson.

Purpose of the specification

This specification sets out:
- the objectives of the qualification
- any other qualification(s) that a student must have completed before taking the qualification
- any prior knowledge and skills that the student is required to have before taking the qualification
- any other requirements that a student must have satisfied before they will be assessed or before the qualification will be awarded
- the knowledge and understanding that will be assessed as part of the qualification
- the method of assessment and any associated requirements relating to it
- the criteria against which a student’s level of attainment will be measured (such as assessment criteria).
Rationale

The Pearson Edexcel Level 3 Advanced Subsidiary GCE in Biology B meets the following purposes, which fulfil those defined by the Office of Qualifications and Examinations Regulation (Ofqual) for GCE qualifications in their GCE Qualification Level Conditions and Requirements document, published in April 2014.

The purposes of this qualification are to:

- provide evidence of students’ achievements in a robust and internationally comparable post-16 course of study that is a sub-set of Advanced GCE content
- enable students to broaden the range of subjects they study.

Qualification aims and objectives

The aims and objectives of the Pearson Edexcel Level 3 Advanced Subsidiary GCE in Biology B are to enable students to develop:

- essential knowledge and understanding of different areas of the subject and how they relate to each other
- and demonstrate a deep appreciation of the skills, knowledge and understanding of scientific methods
- competence and confidence in a variety of practical, mathematical and problem-solving skills
- their interest in and enthusiasm for the subject, including developing an interest in further study and careers associated with the subject
- understanding of how society makes decisions about scientific issues and how the sciences contribute to the success of the economy and society.
The context for the development of this qualification

All our qualifications are designed to meet our World Class Qualification Principles\(^1\) and our ambition to put the student at the heart of everything we do.

We have developed and designed this qualification by:

- reviewing other curricula and qualifications to ensure that it is comparable with those taken in high-performing jurisdictions overseas
- consulting with key stakeholders on content and assessment, including subject associations, higher education academics, teachers and employers to ensure this qualification is suitable for a UK context
- reviewing the legacy qualification and building on its positive attributes.

This qualification has also been developed to meet criteria stipulated by Ofqual in their document *GCE Qualification Level Conditions and Requirements* and by the Department for Education (DfE) in their *GCE AS and A level regulatory requirements for biology, chemistry, physics and psychology* document, published in April 2014.

\(^1\) Pearson’s World Class Qualification principles ensure that our qualifications are:

- **demanding**, through internationally benchmarked standards, encouraging deep learning and measuring higher-order skills
- **rigorous**, through setting and maintaining standards over time, developing reliable and valid assessment tasks and processes, and generating confidence in end users of the knowledge, skills and competencies of certified students
- **inclusive**, through conceptualising learning as continuous, recognising that students develop at different rates and have different learning needs, and focusing on progression
- **empowering**, through promoting the development of transferable skills, see Appendix 1.
Contents

Qualification at a glance
Knowledge, skills and understanding
Assessment
Assessment summary
Assessment Objectives and weightings
Breakdown of Assessment Objectives
Entry and assessment information
 - Student entry
 - Forbidden combinations and discount code
 - Access arrangements, reasonable adjustments and special consideration
 - Malpractice
Equality Act 2010 and Pearson equality policy
Synoptic assessment
Awarding and reporting
Language of assessment

Other information
Student recruitment
Prior learning and other requirements
Progression
 - Relationship between Advanced Subsidiary GCE and Advanced GCE
 - Progression from Advanced Subsidiary GCE to Advanced GCE
 - Relationship between GCSE and Advanced Subsidiary GCE
 - Progression from GCSE to Advanced Subsidiary GCE

Appendix 1: Transferable skills
Appendix 2: Level 3 Extended Project qualification
Appendix 3: Codes
Appendix 4: Working scientifically
Appendix 4a: Practical skills identified for indirect assessment and developed through teaching and learning
Appendix 5: Mathematical skills and exemplifications
Appendix 6: Command words used in examination papers
Qualification at a glance

The Pearson Edexcel Level 3 Advanced Subsidiary GCE in Biology B consists of two externally examined papers.

Students are expected to carry out the eight core practical experiments that are identified in the content.

Students must complete both assessments in May/June in any single year.

Paper 1: Core Cellular Biology and Microbiology

*Paper code: 8BI0/01

- Externally assessed
- Availability: May/June
- First Assessment: 2016

Overview of content

This paper will examine the following topics:

- Topic 1: Biological Molecules
- Topic 2: Cells, Viruses and Reproduction of Living Things.

Overview of assessment

- Assessment is 1 hour 30 minutes.
- The paper consists of 80 marks.
- The paper may include multiple-choice, short open, open-response, calculations and extended writing questions.
- The paper will include questions that target mathematics at Level 2 or above (see Appendix 5: Mathematical skills and exemplifications). Overall, a minimum of 10% of the marks across both papers will be awarded for mathematics at Level 2 or above.
- The paper will include questions that target the conceptual and theoretical understanding of experimental methods.

*See Appendix 3: Codes for a description of this code and all other codes relevant to this qualification.
Paper 2: Core Physiology and Ecology

<table>
<thead>
<tr>
<th>Paper code: 8BI0/02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Externally assessed</td>
</tr>
<tr>
<td>Availability: May/June</td>
</tr>
<tr>
<td>First Assessment: 2016</td>
</tr>
</tbody>
</table>

50% of the total qualification

Overview of content
This paper will examine the following topics:
- Topic 3: Classification and Biodiversity
- Topic 4: Exchange and Transport.

Overview of assessment
- Assessment is 1 hour 30 minutes.
- The paper consists of 80 marks.
- The paper may include multiple-choice, short open, open-response, calculations and extended writing questions.
- The paper will include questions that target mathematics at Level 2 or above (see *Appendix 5: Mathematical skills and exemplifications*). Overall, a minimum of 10% of the marks across both papers will be awarded for mathematics at Level 2 or above.
- The paper will include questions that target the conceptual and theoretical understanding of experimental methods.

*See *Appendix 3: Codes* for a description of this code and all other codes relevant to this qualification.*
Knowledge, skills and understanding

Content overview
Students will be expected to demonstrate and apply the knowledge, understanding and skills described in the content for each topic below. In addition, they will be expected to analyse, interpret and evaluate a range of scientific information, ideas and evidence using their knowledge, understanding and skills.
To demonstrate knowledge, students should be able to undertake a range of activities, including the ability to recall, describe and define, as appropriate. To demonstrate understanding, students should be able to explain ideas and use their knowledge to apply, analyse, interpret and evaluate, as appropriate.
Core practicals will be assessed by examination.
Each topic begins with an overview of the wider biological context designed to encourage an overarching approach to both the teaching and learning of the subject. As such, it will not be directly assessed.
There are opportunities for students to develop mathematical skills throughout the content. They are required to apply the skills to relevant biology contexts. In order to be able to develop their skills, knowledge and understanding in science, students need to have been taught, and to have acquired competence in, the appropriate areas of mathematics relevant to the subject. These skills will be applied in the context of Biology and will be developed throughout the course. The relevant mathematical skills listed in Appendix 5 must be assessed within the lifetime of the qualification.

Practical skills
Practical work is central to any study of biology. For this reason, the specification includes eight core practical activities which form a thread linking theoretical knowledge and understanding to practical scenarios. In following this thread, students will build on practical skills learned at GCSE, becoming confident practical biologists, handling apparatus competently and safely. Using a variety of apparatus and techniques, they should be able to design and carry out both the core practical activities and their own investigations, collecting data which can be analysed and used to draw valid conclusions.
One important aspect of practical work is the ability to evaluate and manage potential risks. The variety of different practical techniques and scenarios in the core practical activities give students scope to consider risk management in different contexts.
Students should also consider the ethical issues presented by their work in the laboratory, which might include consideration for the ethical use of live subjects, the safe disposal of waste materials, and appropriate consideration for other people involved in their own work or who is working nearby.
Also central to the development of practical skills is the ability to communicate information and ideas through the use of appropriate terminology and ICT. Being able to communicate clearly the findings of practical work is arguably as important as the collection of accurate data.
In carrying out practical activities, students will be expected to use their knowledge and understanding to pose scientific questions which can be investigated through experimental activities. Such activities will enable students to collect data, analyse it for correlations and causal relationships, and to develop solutions to the questions posed.

Questions within written examination papers will aim to assess the knowledge and understanding that students gain while carrying out practical activities, within the context of the eight core practical activities, as well as in novel practical scenarios. The written papers will test the skills of students in planning practical work – both in familiar and unfamiliar applications – including risk management and the selection of apparatus, with reasons. As part of data handling, students will be expected to use significant figures appropriately, to process data and to plot graphs. In analysing outcomes and drawing valid conclusions, students should critically consider methods and data, including assessing measurement uncertainties and errors.

Examination papers will also provide the opportunity for students to evaluate the wider role of the scientific community in validating new knowledge and the ways in which society as a whole uses science to inform decision making. Within this, they could be asked to consider the implications and applications of biology in terms of associated benefits and risks. Students may also be asked to evaluate methodology, evidence and data and resolve conflicting evidence.

Success in questions that indirectly assess practical skills within written papers will come more naturally to those candidates who have a solid foundation of laboratory practice and who, having carried them out, have a thorough understanding of practical techniques. Therefore, where possible, teachers should consider adding additional experiments to the core practical activities. The eight core practicals will provide the basis from which some of the examination questions will be drawn.
Topic 1: Biological Molecules

This topic introduces the chemicals of life: the organic and inorganic molecules and ions that are fundamental to the structure and physiology of living organisms. The role of monomers in the synthesis of polymers and how the structure and properties of these relate to their functions are considered. An understanding of scientific method is developed in the practical investigation of enzyme action.

Opportunities for developing mathematical skills within this topic include: recognising and making use of appropriate units in calculations; using ratios, fractions and percentages; constructing and interpreting frequency tables and diagrams; translating information between graphical, numerical and algebraic forms; understanding that \(y = mx + c \) represents a linear relationship; determining the intercept of a graph; calculating rate of change from a graph; drawing and using the slope of a tangent to a curve as a measure of rate of change. (Please see *Appendix 5: Mathematical skills and exemplifications* for further information.)

Students should:

<table>
<thead>
<tr>
<th>1.1 Carbohydrates</th>
</tr>
</thead>
<tbody>
<tr>
<td>i Know the difference between monosaccharides, disaccharides and polysaccharides.</td>
</tr>
<tr>
<td>ii Know the structure of the hexose glucose (alpha and beta) and the pentose ribose.</td>
</tr>
<tr>
<td>iii Understand how monosaccharides (glucose, fructose, galactose) join to form disaccharides (sucrose, lactose and maltose) and polysaccharides (starch formed from amylase and amylopectin; glycogen) through condensation reactions forming glycosidic bonds, and how these can be split through hydrolysis reactions.</td>
</tr>
<tr>
<td>iv Understand how the structure of glucose, starch, glycogen and cellulose relates to their function.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.2 Lipids</th>
</tr>
</thead>
<tbody>
<tr>
<td>i Understand how a triglyceride is synthesised including the formation of ester bonds during condensation reactions between glycerol and three fatty acids.</td>
</tr>
<tr>
<td>ii Know the differences between saturated and unsaturated lipids.</td>
</tr>
<tr>
<td>iii Understand how the structure of lipids relates to their role in energy storage, waterproofing and insulation.</td>
</tr>
<tr>
<td>iv Understand how the structure and properties of phospholipids relate to their function in cell membranes.</td>
</tr>
</tbody>
</table>
Students should:

1.3 Proteins

i. Know the structure of an amino acid (structures of specific amino acids are not required).

ii. Understand the formation of polypeptides and proteins (as amino acid monomers linked by peptide bonds in condensation reactions).

iii. Understand the role of ionic, hydrogen and disulfide bonding in the structure of proteins.

iv. Understand the significance of the primary, secondary, tertiary and quaternary structure of a protein in determining the properties of fibrous and globular proteins, including collagen and haemoglobin.

v. Understand how the structure of collagen and haemoglobin are related to their function.

1.4 DNA and protein synthesis

i. Know the structure of DNA, including the structure of the nucleotides (purines and pyrimidines), base pairing, the two sugar-phosphate backbones, phosphodiester bonds and hydrogen bonds.

ii. Understand how DNA is replicated semi-conservatively, including the role of DNA helicase, polymerase and ligase.

iii. Know that a gene is a sequence of bases on a DNA molecule coding for a sequence of amino acids in a polypeptide chain.

iv. Know the structure of mRNA including nucleotides, the sugar phosphate backbone and the role of hydrogen bonds.

v. Know the structure of tRNA, including nucleotides, the role of hydrogen bonds and the anticodon.

vi. Understand the processes of transcription in the nucleus and translation at the ribosome, including the role of sense and anti-sense DNA, mRNA, tRNA and the ribosomes.

vii. Understand the nature of the genetic code, including triplets coding for amino acids, start and stop codons, degenerate and non-overlapping nature, and that not all the genome codes for proteins.

viii. Understand the term gene mutation as illustrated by base deletions, insertions and substitutions.

ix. Understand the effect of point mutations on amino acid sequences, as illustrated by sickle cell anaemia in humans.
Students should:

1.5 Enzymes

i. Know the structure of enzymes as globular proteins.

ii. Understand the concepts of specificity and the induced fit hypothesis.

iii. Understand that enzymes are catalysts that reduce activation energy.

iv. Understand how temperature, pH, substrate and enzyme concentration affect the rate of enzyme activity.

CORE PRACTICAL 1: Investigate a factor affecting the initial rate of an enzyme-controlled reaction.

v. Understand how the initial rate of enzyme activity can be measured and why this is important.

vi. Understand how enzymes can be affected by competitive, non-competitive and end-product inhibition.

vii. Know that enzymes catalyse a wide range of intracellular reactions as well as extracellular ones.

1.6 Inorganic ions

i. Understand the role in plants of:
 - nitrate ions – to make DNA and amino acids
 - calcium ions – to form calcium pectate for the middle lamellae
 - magnesium ions – to produce chlorophyll
 - phosphate ions – to make ADP and ATP.

1.7 Water

i. Understand the importance of the dipole nature of water leading to hydrogen bonding and the significance of the following to organisms:
 - high specific heat capacity
 - polar solvent
 - surface tension
 - incompressibility
 - maximum density at 4 °C.
Topic 2: Cells, Viruses and Reproduction of Living Things

This topic considers the ultrastructure of prokaryotes, eukaryotes and viruses. Details of the types of nuclear division are included and how these are involved in animal and plant reproduction. Microscopy and observational skills are developed through the preparation of stained plant tissue.

Opportunities for developing mathematical skills within this topic include: recognising and using expressions in decimal and standard form; making order of magnitude calculations; changing the subject of an equation; plotting two variables from experimental or other data. (Please see Appendix 5: Mathematical skills and exemplifications for further information.)

Students should:

2.1 Eukaryotic and prokaryotic cell structure and function

i Understand that cell theory is a unifying concept that states that cells are a fundamental unit of structure, function and organisation in all living organisms.

ii Understand that in complex organisms, cells are organised into tissues, organs, and organ systems.

iii Know the ultrastructure of prokaryotic cells and the structure of organelles, including: nucleoid, plasmids, 70S ribosomes and cell wall.

iv Be able to distinguish between Gram positive and Gram negative bacterial cell walls and understand why each type reacts differently to some antibiotics.

v Know the ultrastructure of eukaryotic cells and the functions of organelles, including: nucleus, nucleolus, 80S ribosomes, rough and smooth endoplasmic reticulum, mitochondria, centrioles, lysosomes, Golgi apparatus, cell wall, chloroplasts, vacuole and tonoplast.

vi Know how magnification and resolution can be achieved using light and electron microscopy.

vii Understand the importance of staining specimens in microscopy.

CORE PRACTICAL 2: Use of the light microscope, including simple stage and eyepiece micrometers and drawing small numbers of cells from a specialised tissue.
Students should:

2.2 Viruses

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>Understand that the classification of viruses is based on structure and nucleic acid types as illustrated by λ (lambda) phage (DNA), tobacco mosaic virus and Ebola (RNA) and human immunodeficiency virus (RNA retrovirus).</td>
</tr>
<tr>
<td>ii</td>
<td>Know the lytic cycle of a virus and latency.</td>
</tr>
<tr>
<td>iii</td>
<td>Know that viruses are not living cells and so antivirals must work by inhibiting virus replication.</td>
</tr>
<tr>
<td>iv</td>
<td>Know that as viruses can be difficult to treat once infection has occurred, the focus of disease control should be on preventing the spread, as exemplified by the 2014 Ebola outbreak in West Africa.</td>
</tr>
<tr>
<td>v</td>
<td>Be able to evaluate the ethical implications of using untested drugs during epidemics.</td>
</tr>
</tbody>
</table>

2.3 Eukaryotic cell cycle and division

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>Know that the cell cycle is a regulated process in which cells divide into two identical daughter cells, and that this process consists of three main stages: interphase, mitosis and cytokinesis.</td>
</tr>
<tr>
<td>ii</td>
<td>Understand what happens to genetic material during the cell cycle, including the stages of mitosis.</td>
</tr>
<tr>
<td>iii</td>
<td>Understand how mitosis contributes to growth, repair and asexual reproduction.</td>
</tr>
<tr>
<td>CORE PRACTICAL 3: Make a temporary squash preparation of a root tip to show stages of mitosis in the meristem under the light microscope.</td>
<td></td>
</tr>
<tr>
<td>iv</td>
<td>Understand how meiosis results in haploid gametes, including the stages of meiosis.</td>
</tr>
<tr>
<td>v</td>
<td>Understand that meiosis results in genetic variation through recombination of alleles, including independent assortment and crossing over.</td>
</tr>
<tr>
<td>vi</td>
<td>Understand what chromosome mutations are, as illustrated by translocations.</td>
</tr>
<tr>
<td>vii</td>
<td>Understand how non-disjunction can lead to polysomy, including Down’s syndrome, and monosomy, including Turner’s syndrome.</td>
</tr>
<tr>
<td>Students should:</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>2.4 Sexual reproduction in mammals</td>
<td></td>
</tr>
<tr>
<td>i</td>
<td>Understand the process of oogenesis and spermatogenesis.</td>
</tr>
<tr>
<td>ii</td>
<td>Understand the events of fertilisation from the first contact between the gametes to the fusion of nuclei.</td>
</tr>
<tr>
<td>iii</td>
<td>Understand the early development of the embryo to blastocyst stage.</td>
</tr>
<tr>
<td>2.5 Sexual reproduction in plants</td>
<td></td>
</tr>
<tr>
<td>i</td>
<td>Understand how a pollen grain forms in the anther and the embryo sac forms in the ovule.</td>
</tr>
<tr>
<td>ii</td>
<td>Understand how the male nuclei formed by division of the generative nucleus in the pollen grain reach the embryo sac, including the roles of the tube nucleus, pollen tube and enzymes.</td>
</tr>
<tr>
<td>CORE PRACTICAL 4: Investigate the effect of sucrose concentrations on pollen tube growth or germination.</td>
<td></td>
</tr>
<tr>
<td>iii</td>
<td>Understand the process of double fertilisation inside the embryo sac to form a triploid endosperm and a zygote.</td>
</tr>
</tbody>
</table>
Topic 3: Classification and Biodiversity

This topic considers the evidence used in the development of models for the classification of organisms. It also considers the limitations of these models. The topic includes the principles underlying natural selection and how this can lead to speciation.

Opportunities for developing mathematical skills within this topic include the principles of sampling as applied to scientific data, and assessment of species diversity using a formula to calculate an index of diversity. (Please see Appendix 5: Mathematical skills and exemplifications for further information.)

Students should:

3.1 Classification

i Know that the classification system consists of a hierarchy of domain, kingdom, phylum, class, order, family, genus and species.

ii Understand the limitations of the definition of a species as a group of organisms with similar characteristics that interbreed to produce fertile offspring.

iii Understand why it is often difficult to assign organisms to any one species or to identify new species.

iv Understand how gel electrophoresis can be used to distinguish between species and determine evolutionary relationships.

v Know that DNA sequencing and bioinformatics can be used to distinguish between species and determine evolutionary relationships.

vi Understand the role of scientific journals, the peer review process and scientific conferences in validating new evidence supporting the accepted scientific theory of evolution.

vii Understand the evidence for the three-domain model of classification as an alternative to the five-kingdom model and the role of the scientific community in validating this evidence.

3.2 Natural selection

i Understand how evolution can come about through natural selection acting on variation bringing about adaptations.

ii Understand how organisms occupy niches according to physiological, behavioural and anatomical adaptations.

iii Understand how reproductive isolation can lead to allopatric and sympatric speciation.

iv Understand that there is an evolutionary race between pathogens and the development of medicines to treat the diseases they cause.
Students should:

3.3 Biodiversity

i. Know that biodiversity can be assessed at different scales:
 - within a habitat at the species level using a formula to calculate an index of diversity:
 \[
 D = \frac{N(N-1)}{\sum n(n-1)}
 \]
 - within a species at the genetic level by looking at the variety of alleles in the gene pool of a population.

ii. Understand the ethical and economic reasons (ecosystem services) for the maintenance of biodiversity.

iii. Understand the principles of ex-situ (zoos and seed banks) and in-situ conservation (protected habitats), and the issues surrounding each method.
Topic 4: Exchange and Transport

This topic considers the requirements for transport mechanisms in cells and mass flow systems in organisms. The roles of the components of the mammalian circulatory system and the vascular system in plants are studied. Practical skills are developed through the investigation of factors that affect membrane permeability and water potential of plant tissues.

Opportunities for developing mathematical skills within this topic include: recognising and making use of appropriate units in calculations; recognising and using expressions in decimal and standard form; using ratios, fractions and percentages; finding arithmetic means; solving algebraic equations; translating information between graphical, numerical and algebraic forms; plotting variables from experimental data; understanding that \(y = mx + c \) represents a linear relationship; determining the intercept of a graph; calculating rate of change from a graph showing a linear relationship; calculating the circumferences, surface areas and volumes of regular shapes. (Please see Appendix 5: Mathematical skills and exemplifications for further information.)

<table>
<thead>
<tr>
<th>Students should:</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Surface area to volume ratio</td>
</tr>
<tr>
<td>i Under nderstand how surface area to volume ratio affects transport of molecules in living organisms.</td>
</tr>
<tr>
<td>ii Understand why organisms need a mass transport system and specialised gas exchange surfaces as they increase in size.</td>
</tr>
<tr>
<td>4.2 Cell transport mechanisms</td>
</tr>
<tr>
<td>i Know the structure of the cell surface membrane with reference to the fluid mosaic model.</td>
</tr>
<tr>
<td>ii Understand how passive transport is brought about by:</td>
</tr>
<tr>
<td>• diffusion</td>
</tr>
<tr>
<td>• facilitated diffusion (through carrier proteins and protein channels)</td>
</tr>
<tr>
<td>• osmosis</td>
</tr>
<tr>
<td>iii Understand how the properties of molecules affects how they are transported, including solubility, size and charge.</td>
</tr>
<tr>
<td>iv Know that large molecules can be transported into and out of cells through the formation of vesicles, in the processes of endocytosis and exocytosis.</td>
</tr>
</tbody>
</table>

CORE PRACTICAL 5: Investigate the effect of temperature on beetroot membrane permeability.

CORE PRACTICAL 6: Determine the water potential of plant cells.

\[
\psi = P + \pi
\]

Water potential = turgor pressure + osmotic potential
<table>
<thead>
<tr>
<th>Students should:</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2 Cell transport mechanisms (continued)</td>
</tr>
<tr>
<td>v Understand the process of active transport, including the role of ATP.</td>
</tr>
<tr>
<td>vi Know that phosphorylation of ADP requires energy and that hydrolysis of ATP provides an accessible supply of energy for biological processes.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4.3 Gas exchange</th>
</tr>
</thead>
<tbody>
<tr>
<td>i Understand how insects, fish and mammals are adapted for gas exchange.</td>
</tr>
<tr>
<td>CORE PRACTICAL 7: Dissect an insect to show the structure of the gas exchange system, taking into account the safe and ethical use of organisms.</td>
</tr>
<tr>
<td>ii Understand gas exchange in flowering plants, including the role of stomata and gas exchange surfaces in the leaf and lenticels.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4.4 Circulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>i Know the structure of the heart, arteries, veins and capillaries.</td>
</tr>
<tr>
<td>ii Understand the advantages of a double circulatory system in mammals over the single circulatory systems in bony fish, including the facility for blood to be pumped to the body at higher pressure and the splitting of oxygenated and deoxygenated blood.</td>
</tr>
<tr>
<td>iii Know the sequence of events of the cardiac cycle.</td>
</tr>
<tr>
<td>iv Understand myogenic stimulation of the heart, including the roles of the sinoatrial node (SAN), atrioventricular node (AVN) and bundle of His.</td>
</tr>
<tr>
<td>v Be able to interpret data showing ECG traces and pressure changes during the cardiac cycle.</td>
</tr>
<tr>
<td>vi Know the structure of blood as plasma and blood cells, to include erythrocytes and leucocytes (neutrophils, eosinophils, monocytes and lymphocytes).</td>
</tr>
<tr>
<td>vii Know the function of blood as transport, defence, and formation of lymph and tissue fluid.</td>
</tr>
<tr>
<td>viii Understand the role of platelets and plasma proteins in the sequence of events leading to blood clotting, including:</td>
</tr>
<tr>
<td>- platelets form a plug and release clotting factors, including thromboplastin</td>
</tr>
<tr>
<td>- prothrombin changes to its active form, thrombin</td>
</tr>
<tr>
<td>- soluble fibrinogen forms insoluble fibrin to cover the wound.</td>
</tr>
<tr>
<td>ix Understand the stages that lead to atherosclerosis, its effect on health and the factors that increase the risk of its development.</td>
</tr>
</tbody>
</table>
Students should:

4.5 **Transport of gases in the blood**

i Understand the structure of haemoglobin in relation to its role in the transport of respiratory gases, including the Bohr effect.

ii Understand the oxygen dissociation curve of haemoglobin.

iii Understand the similarities and differences between the structures and functions of haemoglobin and myoglobin.

iv Understand the significance of the oxygen affinity of fetal haemoglobin as compared to adult haemoglobin.

4.6 **Transfer of materials between the circulatory system and cells**

i Understand how the interchange of substances occurs through the formation and reabsorption of tissue fluid, including the effects of hydrostatic pressure and oncotic pressure.

ii Know that tissue fluid that is not reabsorbed is returned to the blood via the lymph system.

4.7 **Transport in plants**

i Understand the structure of xylem and phloem tissues in relation to their role in transport.

ii Understand how water can be moved through plant cells by the apoplastic and symplastic pathways.

iii Understand how the cohesion-tension model explains the transport of water from plant roots to shoots.

iv Understand how temperature, light, humidity and movement of air affect the rate of transpiration.

v Understand the strengths and weaknesses of the mass-flow hypothesis in explaining the movement of sugars through phloem tissue.

CORE PRACTICAL 8: Investigate factors affecting water uptake by plant shoots using a potometer.
Assessment

Assessment summary

Summary of table of assessment
Students must complete both assessments in May/June in any single year.

<table>
<thead>
<tr>
<th>Paper 1: Core Cellular Biology and Microbiology</th>
<th>*Paper code: 8BIO/01</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Questions draw on content from Topics 1 and 2.</td>
<td>50% of the total qualification</td>
</tr>
<tr>
<td>• Questions are broken down into a number of parts.</td>
<td></td>
</tr>
<tr>
<td>• Availability: May/June</td>
<td></td>
</tr>
<tr>
<td>• First assessment: 2016</td>
<td></td>
</tr>
<tr>
<td>• The assessment is 1 hour 30 minutes.</td>
<td></td>
</tr>
<tr>
<td>• The assessment consists of 80 marks.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Paper 2: Core Physiology and Ecology</th>
<th>*Paper code: 8BIO/02</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Questions draw on content from Topics 3 and 4.</td>
<td>50% of the total qualification</td>
</tr>
<tr>
<td>• Questions are broken down into a number of parts.</td>
<td></td>
</tr>
<tr>
<td>• Availability: May/June</td>
<td></td>
</tr>
<tr>
<td>• First assessment: 2016</td>
<td></td>
</tr>
<tr>
<td>• The assessment is 1 hour 30 minutes.</td>
<td></td>
</tr>
<tr>
<td>• The assessment consists of 80 marks.</td>
<td></td>
</tr>
</tbody>
</table>

The sample assessment materials can be found in the *Pearson Edexcel Level 3 Advanced Subsidiary GCE in Biology B Sample Assessment Materials* document. *See Appendix 3: Codes for a description of this code and all other codes relevant to this qualification.*
Assessment Objectives and weightings

<table>
<thead>
<tr>
<th>Students must:</th>
<th>% in GCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>AO1</td>
<td>Demonstrate knowledge and understanding of scientific ideas, processes, techniques and procedures.</td>
</tr>
</tbody>
</table>
| **AO2** | Apply knowledge and understanding of scientific ideas, processes, techniques and procedures:
 - in a theoretical context
 - in a practical context
 - when handling qualitative data
 - when handling quantitative data. | 41-43 |
| **AO3** | Analyse, interpret and evaluate scientific information, ideas and evidence, including in relation to issues, to:
 - make judgements and reach conclusions
 - develop and refine practical design and procedures. | 20-23 |

Breakdown of Assessment Objectives

<table>
<thead>
<tr>
<th>Paper</th>
<th>AO1</th>
<th>AO2</th>
<th>AO3</th>
<th>Total for all Assessment Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper 1: Core Cellular Biology and Microbiology</td>
<td>17-19%</td>
<td>20-22%</td>
<td>10-12%</td>
<td>50%</td>
</tr>
<tr>
<td>Paper 2: Core Physiology and Ecology</td>
<td>17-19%</td>
<td>20-22%</td>
<td>10-12%</td>
<td>50%</td>
</tr>
<tr>
<td>Total for this qualification</td>
<td>35-37%</td>
<td>41-43%</td>
<td>20-23%</td>
<td>100%</td>
</tr>
</tbody>
</table>
Entry and assessment information

Student entry

Details of how to enter students for the examinations for this qualification can be found in our UK Information Manual. A copy is made available to all examinations officers and is available on our website at: www.edexcel.com/iwantto/Pages/uk-information-manual.aspx.

Forbidden combinations and discount code

Centres should be aware that students who enter for more than one GCE qualification with the same discount code will have only one of the grades they achieve counted for the purpose of the School and College Performance Tables – normally the better grade (please see Appendix 3: Codes). Students should be advised that if they take two qualifications with the same discount code, colleges, universities and employers are very likely to take the view that they have achieved only one of the two GCEs. The same view may be taken if students take two GCE qualifications that have different discount codes but have significant overlap of content. Students or their advisers who have any doubts about their subject combinations should check with the institution to which they wish to progress before embarking on their programmes.

Access arrangements, reasonable adjustments and special consideration

Access arrangements

Access arrangements are agreed before an assessment. They allow students with special educational needs, disabilities or temporary injuries to:

- access the assessment
- show what they know and can do without changing the demands of the assessment.

The intention behind an access arrangement is to meet the particular needs of an individual student with a disability without affecting the integrity of the assessment. Access arrangements are the principal way in which awarding organisations comply with the duty under the Equality Act 2010 to make ‘reasonable adjustments’.
Access arrangements should always be processed at the start of the course. Students will then know what is available and have the access arrangement(s) in place for assessment.

Reasonable adjustments

The Equality Act 2010 requires an awarding organisation to make reasonable adjustments where a person with a disability would be at a substantial disadvantage in undertaking an assessment. The awarding organisation is required to take reasonable steps to overcome that disadvantage.

A reasonable adjustment for a particular person may be unique to that individual and therefore might not be in the list of available access arrangements.

Whether an adjustment will be considered reasonable will depend on a number of factors, which will include:

- the needs of the student with the disability
- the effectiveness of the adjustment
- the cost of the adjustment; and
- the likely impact of the adjustment on the student with the disability and other students.

An adjustment will not be approved if it involves unreasonable costs to the awarding organisation or timeframes or affects the security or integrity of the assessment. This is because the adjustment is not ‘reasonable’.

Special consideration

Special consideration is a post-examination adjustment to a student’s mark or grade to reflect temporary injury, illness or other indisposition at the time of the examination/assessment, which has had, or is reasonably likely to have had, a material effect on a candidate’s ability to take an assessment or demonstrate his or her level of attainment in an assessment.

Further information

Please see our website for further information about how to apply for access arrangements and special consideration. For further information about access arrangements, reasonable adjustments and special consideration, please refer to the JCQ website: www.jcq.org.uk.

Malpractice

Candidate malpractice

Candidate malpractice refers to any act by a candidate that compromises or seeks to compromise the process of assessment or which undermines the integrity of the qualifications or the validity of results/certificates.
Candidate malpractice in examinations must be reported to Pearson using a JCQ M1 Form (available at www.jcq.org.uk/exams-office/malpractice). The form can be emailed to pqsmalpractice@pearson.com or posted to Investigations Team, Pearson, 190 High Holborn, London, WC1V 7BH. Please provide as much information and supporting documentation as possible. Note that the final decision regarding appropriate sanctions lies with Pearson. Failure to report malpractice constitutes staff or centre malpractice.

Staff/centre malpractice

Staff and centre malpractice includes both deliberate malpractice and maladministration of our qualifications. As with candidate malpractice, staff and centre malpractice is any act that compromises or seeks to compromise the process of assessment or which undermines the integrity of the qualifications or the validity of results/certificates. All cases of suspected staff malpractice and maladministration must be reported immediately, before any investigation is undertaken by the centre, to Pearson on a JCQ M2(a) Form (available at www.jcq.org.uk/exams-office/malpractice). The form, supporting documentation and as much information as possible can be emailed to pqsmalpractice@pearson.com or posted to Investigations Team, Pearson, 190 High Holborn, London, WC1V 7BH. Note that the final decision regarding appropriate sanctions lies with Pearson. Failure to report malpractice itself constitutes malpractice. More-detailed guidance on malpractice can be found in the latest version of the document JCQ General and Vocational Qualifications Suspected Malpractice in Examinations and Assessments, available at www.jcq.org.uk/exams-office/malpractice.

Equality Act 2010 and Pearson equality policy

Equality and fairness are central to our work. Our equality policy requires all students to have equal opportunity to access our qualifications and assessments, and our qualifications to be awarded in a way that is fair to every student.

We are committed to making sure that:

- students with a protected characteristic (as defined by the Equality Act 2010) are not, when they are undertaking one of our qualifications, disadvantaged in comparison to students who do not share that characteristic.
all students achieve the recognition they deserve for undertaking a qualification and that this achievement can be compared fairly to the achievement of their peers.

You can find details on how to make adjustments for students with protected characteristics in the policy document Access Arrangements, Reasonable Adjustments and Special Considerations, which is on our website, www.edexcel.com/Policies.

Synoptic assessment

Synoptic assessment requires students to work across different parts of a qualification and to show their accumulated knowledge and understanding of a topic or subject area.

Synoptic assessment enables students to show their ability to combine their skills, knowledge and understanding with breadth and depth of the subject.

Awarding and reporting

This qualification will be graded, awarded and certificated to comply with the requirements of the current Code of Practice published by the Office of Qualifications and Examinations Regulation (Ofqual).

This qualification will be graded and certificated on a five-grade scale from A to E using the total subject mark. Individual papers are not graded.

The first certification opportunity for the Pearson Edexcel Level 3 Advanced Subsidiary GCE in Biology B will be 2016. Students whose level of achievement is below the minimum judged by Pearson to be of sufficient standard to be recorded on a certificate will receive an unclassified U result.

Language of assessment

Assessment of this qualification will be available in English. All student work must be in English.
Other information

Student recruitment

Pearson follows the JCQ policy concerning recruitment to our qualifications in that:
- they must be available to anyone who is capable of reaching the required standard
- they must be free from barriers that restrict access and progression
- equal opportunities exist for all students.

Prior learning and other requirements

There are no prior learning or other requirements for this qualification.
Students who would benefit most from studying this qualification are likely to have a Level 2 qualification such as a GCSE in Additional Science or Biology.

Progression

Students can progress from this qualification to:
- a range of different relevant academic or vocational higher education qualifications
- employment in a relevant sector
- further training.

Relationship between Advanced Subsidiary GCE and Advanced GCE

The content for Advanced GCE in Biology B includes all the content studied at Advanced Subsidiary GCE. The Advanced GCE in Biology B builds on the knowledge, skills, and understanding achieved when studying the Advanced Subsidiary GCE in Biology B.

Progression from Advanced Subsidiary GCE to Advanced GCE

Students who have achieved the Advanced Subsidiary GCE in Biology B can progress to the Advanced GCE in Biology B. They would have covered Topics 1-4 which are common to both qualifications but the additional Topics 5-10 will need to be covered and then all the assessment for the Advanced GCE qualification must be taken at the end of the course.
Relationship between GCSE and Advanced Subsidiary GCE

Students cover Key Stage 4 fundamental core concepts in sciences at GCSE and continue to cover these concepts and additional subject material in the Advanced Subsidiary GCE at Key Stage 5.

Progression from GCSE to Advanced Subsidiary GCE

Students will draw on knowledge and understanding achieved in GCSE Additional Science or GCSE Biology to progress to an Advanced Subsidiary GCE in Biology B qualification.
Appendices

Appendix 1: Transferable skills 27
Appendix 2: Level 3 Extended Project qualification 29
Appendix 3: Codes 33
Appendix 4: Working scientifically 35
Appendix 4a: Practical skills identified for indirect assessment and developed through teaching and learning 37
Appendix 5: Mathematical skills and exemplifications 39
Appendix 6: Command words used in examination papers 45
Appendix 1: Transferable skills

The need for transferable skills
In recent years, higher education institutions and employers have consistently flagged the need for students to develop a range of transferable skills to enable them to respond with confidence to the demands of undergraduate study and the world of work.

The Organisation for Economic Co-operation and Development (OECD) defines skills, or competencies, as ‘the bundle of knowledge, attributes and capacities that can be learned and that enable individuals to successfully and consistently perform an activity or task and can be built upon and extended through learning.’

To support the design of our qualifications, the Pearson Research Team selected and evaluated seven global 21st-century skills frameworks. Following on from this process, we identified the National Research Council’s (NRC) framework as the most evidence-based and robust skills framework. We adapted the framework slightly to include the Program for International Student Assessment (PISA) ICT Literacy and Collaborative Problem Solving (CPS) Skills.

The adapted National Research Council’s framework of skills involves:

Cognitive skills
- **Non-routine problem solving** – expert thinking, metacognition, creativity.
- **Systems thinking** – decision making and reasoning.
- **Critical thinking** – definitions of critical thinking are broad and usually involve general cognitive skills such as analysing, synthesising and reasoning skills.
- **ICT literacy** – access, manage, integrate, evaluate, construct and communicate.

Interpersonal skills
- **Communication** – active listening, oral communication, written communication, assertive communication and non-verbal communication.
- **Relationship-building skills** – teamwork, trust, intercultural sensitivity, service orientation, self-presentation, social influence, conflict resolution and negotiation.
- **Collaborative problem solving** – establishing and maintaining shared understanding, taking appropriate action, establishing and maintaining team organisation.

3 PISA (2011) The PISA Framework for Assessment of ICT Literacy, PISA
Intrapersonal skills

- **Adaptability** – ability and willingness to cope with the uncertain, handling work stress, adapting to different personalities, communication styles and cultures, and physical adaptability to various indoor and outdoor work environments.

- **Self-management and self-development** – ability to work remotely in virtual teams, work autonomously, be self-motivating and self-monitoring, willing and able to acquire new information and skills related to work.

Transferable skills enable young people to face the demands of further and higher education, as well as the demands of the workplace, and are important in the teaching and learning of this qualification. We will provide teaching and learning materials, developed with stakeholders, to support our qualifications.
Appendix 2: Level 3 Extended Project qualification

What is the Extended Project?
The Extended Project is a standalone qualification that can be taken alongside GCEs. It supports the development of independent learning skills and helps to prepare students for their next step – whether that be university study or employment. The qualification:

- is recognised by universities for the skills it develops
- is worth half of an Advanced GCE qualification at grades A* to E
- carries UCAS points for university entry.

The Extended Project encourages students to develop skills in the following areas: research, critical thinking, extended writing and project management. Students identify and agree a topic area of their choice (which may or may not be related to a GCE subject they are already studying), guided by their teacher.

Students can choose from one of four approaches to produce:

- a dissertation (for example an investigation based on predominately secondary research)
- an investigation/field study (for example a practical experiment)
- a performance (for example in music, drama or sport)
- an artefact (for example creating a sculpture in response to a client brief or solving an engineering problem).

The qualification is coursework based and students are assessed on the skills of managing, planning and evaluating their project. Students will research their topic, develop skills to review and evaluate the information, and then present the final outcome of their project.

Students: what they need to do

The Extended Project qualification requires students to:

- select a topic of interest for an in-depth study and negotiate the scope of the project with their teacher
- identify and draft an objective for their project (for example in the form of a question, hypothesis, challenge, outline of proposed performance, issue to be investigated or commission for a client) and provide a rationale for their choice
- produce a plan for how they will deliver their intended objective
- conduct research as required by the project brief, using appropriate techniques
- carry out the project using tools and techniques safely
- share the outcome of the project using appropriate communication methods, including a presentation.
Teachers: key information

- The Extended Project has 120 guided learning hours (GLH) consisting of:
 - a taught 40-GLH element that includes teaching the technical skills (for example, research skills)
 - an 80-GLH element that includes mentoring students through the project work.
- Group work is acceptable, however it is important that each student provides evidence of their own contribution and produces their own report.
- 100% externally moderated.
- Four Assessment Objectives: manage, use resources, develop and realise, review.
- Can be run over 1, 1½ or 2 years.
- Can be submitted in January or June.

How to link Extended Project with biology

The Extended Project creates the opportunity to develop transferable skills for progression to higher education and to the workplace through the exploration of either an area of personal interest, or a topic of interest, from within the Biology qualification content.

For example, biology students could choose to carry out an investigation which would enable them to develop their skills in data collection, the development and testing of hypotheses and the application of mathematical models in data analysis.

Skills developed

Through the Extended Project students will develop skills in the following areas:

- independent research, including skills in primary research and the selection of appropriate methods for data collection
- extended reading and academic writing, including reading scientific literature and writing about trends or patterns in data sets
- planning/project management, including the refining of hypotheses to be tested in investigations
- data handling and evaluation, including the comparison of data from primary research with published data and exploration of the significance of results
- evaluation of arguments and processes, including arguments in favour of alternative interpretations of data and evaluation of experimental methodology
- critical thinking.

In the context of the Extended Project, critical thinking refers to the ability to identify and develop arguments for a point of view or hypothesis and to consider and respond to alternative arguments.
Using the Extended Project to support breadth and depth

Students are not expected to study specified material. In the Extended Project, students are assessed on the quality of the work they produce and on the skills they develop and demonstrate through completing it. Students can use the Extended Project to demonstrate extension in one or more dimensions:

- **deepening understanding**: where a student explores a topic in greater depth than in the specification content
- **broadening skills**: the student learns a new skill. In a biology-based project, this might involve learning to assemble and manipulate an unfamiliar piece of apparatus or learning advanced data-handling techniques
- **widening perspectives**: the student’s project spans different subjects. This might involve discussing historical, philosophical or ethical aspects of a biology-based topic or making links with other subject areas such as chemistry or geography.

Choosing topics and narrowing down to a question

A dissertation, typically around 6000 words in length, involves addressing a research question through a literature review and argumentative discussion while an investigation/field study involves data collection and analysis, leading to a written report of around 5000 words.

For example, consider a student with an interest in genetic testing. After some initial research, the student decided to explore the risks and benefits associated with direct-to-consumer genetic testing. In the literature review of the project, the student researched the background to genetic testing and looked at the work of some of the companies which offer to do tests. The student created a questionnaire survey to elicit information on people’s attitudes towards testing and their knowledge of the potential risks and benefits. The survey was piloted and then repeated with a sample of 50 people. The student’s data from this survey was compared with published data, and the trends and patterns in data analysed, with consideration of the significance of the results obtained. Finally, the student’s project ended with a review of the effectiveness of the investigation and an oral presentation of the main findings and arguments considered.

Biology-based dissertation projects can cover a wide variety of topics, as these examples illustrate:

- Is it ethical to use stem cells for medical purposes?
- Should restrictions be placed on research into genetic enhancement?
- Is the use of animal experimentation justifiable?
- Is autism genetic?

Examples of Biology-based investigations include:

- Can changing owl behaviour be monitored through pellet studies?
- How has marina development affected local marshland biodiversity?
- Can pollution be effectively monitored by water quality in a local stream?
- Can monitoring a fitness programme help improve hurdling performance?

There is also scope for biology-based artefact Extended Projects. For example a student might set out to design, make and test an item of apparatus. Extended Projects involving a performance can also be biology based. For example a social issue relating to biology could be explored through drama.
Appendix 3: Codes

<table>
<thead>
<tr>
<th>Type of code</th>
<th>Use of code</th>
<th>Code number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discount codes</td>
<td>Every qualification is assigned a discount code indicating the subject area to which it belongs. This code may change. Please go to our website (www.edexcel.com) for details of any changes.</td>
<td>For KS4 performance tables: RH3
For 16-18 performance tables: 1010</td>
</tr>
<tr>
<td>National Qualifications Framework (NQF) codes</td>
<td>Each qualification title is allocated an Ofqual National Qualifications Framework (NQF) code.
The NQF code is known as a Qualification Number (QN). This is the code that features in the DfE Section 96 and on the LARA as being eligible for 16–18 and 19+ funding, and is to be used for all qualification funding purposes. The QN is the number that will appear on the student’s final certification documentation.</td>
<td>The QN for the qualification in this publication is: 601/5300/3</td>
</tr>
<tr>
<td>Subject codes</td>
<td>The subject code is used by centres to enter students for a qualification. Centres will need to use the entry codes only when claiming students’ qualifications.</td>
<td>Advanced Subsidiary GCE – 8BI0</td>
</tr>
<tr>
<td>Paper code</td>
<td>These codes are provided for reference purposes. Students do not need to be entered for individual papers.</td>
<td>Paper 1: 8BI0/01
Paper 2: 8BI0/02</td>
</tr>
</tbody>
</table>
Appendices 4 and 4a are taken from the document *GCE AS and A level regulatory requirements for biology, chemistry, physics and psychology* published by the Department for Education, April 2014. Working scientifically is achieved through practical activities.

Specifications in biology, chemistry and physics must encourage the development of the skills, knowledge and understanding in science through teaching and learning opportunities for regular hands-on practical work.

Skills identified in *Appendix 4a* are assessed in the written examinations.
Appendix 4a: Practical skills identified for indirect assessment and developed through teaching and learning

Question papers will assess the following student’s abilities:

a) **Independent thinking**
 - solve problems set in practical contexts
 - apply scientific knowledge to practical contexts.

b) **Use and application of scientific methods and practices**
 - comment on experimental design and evaluate scientific methods
 - present data in appropriate ways
 - evaluate results and draw conclusions with reference to measurement uncertainties and errors
 - identify variables including those that must be controlled.

c) **Numeracy and the application of mathematical concepts in a practical context**
 - plot and interpret graphs
 - process and analyse data using appropriate mathematical skills as exemplified in the mathematical appendix for each science
 - consider margins of error, accuracy and precision of data.

d) **Instruments and equipment**
 - know and understand how to use a wide range of experimental and practical instruments, equipment and techniques appropriate to the knowledge and understanding included in the specification.
Appendix 5: Mathematical skills and exemplifications

The information in this appendix has been taken directly from the document *GCE AS and A level regulatory requirements for biology, chemistry, physics and psychology*, published by the Department for Education (April 2014).

In order to be able to develop their skills, knowledge and understanding in science, students need to have been taught, and to have acquired, competence in the appropriate areas of mathematics relevant to the subject as indicated in the table of coverage below.

The assessment of quantitative skills will include at least 10% Level 2 or above mathematical skills for biology and psychology, 20% for chemistry and 40% for physics. These skills will be applied in the context of the relevant science A Level. All mathematical content must be assessed within the lifetime of the specification.

The following tables illustrate where these mathematical skills may be developed and could be assessed in each of the sciences. Those shown in bold type would be tested only in the full A Level course.

This list of examples is not exhaustive. These skills could be developed in other areas of specification content.
<table>
<thead>
<tr>
<th>Mathematical skills</th>
<th>Exemplification of mathematical skill in the context of AS Level Biology (assessment is not limited to the examples given below)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) A.0 – arithmetic and numerical computation</td>
<td></td>
</tr>
</tbody>
</table>
| A.0.1 Recognise and make use of appropriate units in calculations | Candidates may be tested on their ability to:
- convert between units, e.g. mm3 to cm3 as part of volumetric calculations
- work out the unit for a rate, e.g. breathing rate |
| A.0.2 Recognise and use expressions in decimal and standard form | Candidates may be tested on their ability to:
- use an appropriate number of decimal places in calculations, e.g. for a mean
- carry out calculations using numbers in standard and ordinary form, e.g. use of magnification
- understand standard form when applied to areas such as size of organelles
- convert between numbers in standard and ordinary form
- understand that significant figures need retaining when making conversions between standard and ordinary form, e.g. 0.0050 mol dm$^{-3}$ is equivalent to 5.0 x 10$^{-3}$ mol dm$^{-3}$ |
| A.0.3 Use ratios, fractions and percentages | Candidates may be tested on their ability to:
- calculate percentage yields
- calculate surface area to volume ratio
- use scales for measuring
- represent phenotypic (monohybrid and dihybrid crosses) |
| A.0.4 Estimate results | Candidates may be tested on their ability to:
- estimate results to sense check that the calculated values are appropriate |
| A.0.5 Use calculators to find and use power, exponential and logarithmic functions | Candidates may be tested on their ability to:
- estimate the number of bacteria grown over a certain length of time |
(ii) A.1 - handling data

<table>
<thead>
<tr>
<th>Mathematical skills</th>
<th>Exemplification of mathematical skill in the context of AS Level Biology (assessment is not limited to the examples given below)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.1.1 Use an appropriate number of significant figures</td>
<td>Candidates may be tested on their ability to:</td>
</tr>
<tr>
<td></td>
<td>- report calculations to an appropriate number of significant figures given raw data quoted to varying numbers of significant figures</td>
</tr>
<tr>
<td></td>
<td>- understand that calculated results can be reported only to the limits of the least accurate measurement</td>
</tr>
<tr>
<td>A.1.2 Find arithmetic means</td>
<td>Candidates may be tested on their ability to:</td>
</tr>
<tr>
<td></td>
<td>- find the mean of a range of data, e.g. the mean number of stomata in the leaves of a plant</td>
</tr>
<tr>
<td>A.1.3 Construct and interpret frequency tables and diagrams, bar charts and histograms</td>
<td>Candidates may be tested on their ability to:</td>
</tr>
<tr>
<td></td>
<td>- represent a range of data in a table with clear headings, units and consistent decimal places</td>
</tr>
<tr>
<td></td>
<td>- interpret data from a variety of tables, e.g. data relating to organ function</td>
</tr>
<tr>
<td></td>
<td>- plot a range of data in an appropriate format, e.g. enzyme activity over time represented on a graph</td>
</tr>
<tr>
<td></td>
<td>- interpret data for a variety of graphs, e.g. explain electrocardiogram traces</td>
</tr>
<tr>
<td>A.1.4 Understand simple probability</td>
<td>Candidates may be tested on their ability to:</td>
</tr>
<tr>
<td></td>
<td>- use the terms ‘probability’ and ‘chance’ appropriately</td>
</tr>
<tr>
<td></td>
<td>- understand the probability associated with genetic inheritance</td>
</tr>
<tr>
<td>A.1.5 Understand the principles of sampling as applied to scientific data</td>
<td>Candidates may be tested on their ability to:</td>
</tr>
<tr>
<td></td>
<td>- analyse random data collected by an appropriate means, e.g. calculate an index of diversity to compare the biodiversity of a habitat</td>
</tr>
<tr>
<td>A.1.6 Understand the terms ‘mean’, ‘median’ and ‘mode’</td>
<td>Candidates may be tested on their ability to:</td>
</tr>
<tr>
<td></td>
<td>- calculate or compare the mean, median and mode of a set of data, e.g. height/mass/size of a group of organisms</td>
</tr>
</tbody>
</table>
Mathematical skills

(ii) A.1 – handling data (continued)

| A.1.7 | Use a scatter diagram to identify a correlation between two variables | Candidates may be tested on their ability to:
- interpret a scattergram, e.g. the effect of lifestyle factors on health |
| A.1.8 | Make order of magnitude calculations | Candidates may be tested on their ability to:
- use and manipulate the magnification formula
 \[\text{magnification} = \frac{\text{size of image}}{\text{size of real object}} \] |
| A.1.9 | Select and use a statistical test | Candidates may be tested on their ability to:
- the chi squared test to test the significance of the difference between observed and expected results
- the Student’s t-test
- the correlation coefficient |
| A.1.10 | Understand measures of dispersion, including standard deviation and range | Candidates may be tested on their ability to:
- calculate the standard deviation
- understand why standard deviation might be a more useful measure of dispersion for a given set of data, e.g. where there is an outlying result |
| A.1.11 | Identify uncertainties in measurements and use simple techniques to determine uncertainty when data are combined | Candidates may be tested on their ability to:
- calculate percentage error where there are uncertainties in measurement |

(iii) A.2 – algebra

| A.2.1 | Understand and use the symbols: \(=, <, <<, >>, >, \propto, \sim \). | No exemplification required |
| A.2.2 | Change the subject of an equation | Candidates may be tested on their ability to:
- use and manipulate equations, e.g. magnification |
| A.2.3 | Substitute numerical values into algebraic equations using appropriate units for physical quantities | Candidates may be tested on their ability to:
- use a given equation, e.g. use a formula to calculate an index of diversity
 \[D = \frac{N(N-1)}{\Sigma n(n-1)} \] |
<table>
<thead>
<tr>
<th>Mathematical skills</th>
<th>Exemplification of mathematical skill in the context of AS Level Biology (assessment is not limited to the examples given below)</th>
</tr>
</thead>
</table>
| A.2.4 Solve algebraic equations | Candidates may be tested on their ability to:
 - solve equations in a biological context, e.g. cardiac output = stroke volume x heart rate |
| A.2.5 Use logarithms in relation to quantities that range over several orders of magnitude | Candidates may be tested on their ability to:
 - use a logarithmic scale in the context of microbiology, e.g. growth rate of a microorganism such as yeast |
| (iv) A.3 – graphs | |
| A.3.1 Translate information between graphical, numerical and algebraic forms | Candidates may be tested on their ability to:
 - understand that data may be presented in a number of formats and be able to use these data, e.g. dissociation curves |
| A.3.2 Plot two variables from experimental or other data | Candidates may be tested on their ability to:
 - select an appropriate format for presenting data, bar charts, histograms, graphs and scattergrams |
| A.3.3 Understand that \(y = mx + c \) represents a linear relationship | Candidates may be tested on their ability to:
 - predict/sketch the shape of a graph with a linear relationship, e.g. the effect of substrate concentration on the rate of an enzyme-controlled reaction with excess enzyme |
| A.3.4 Determine the intercept of a graph | Candidates may be tested on their ability to:
 - read off an intercept point from a graph, e.g. compensation point in plants |
| A.3.5 Calculate rate of change from a graph showing a linear relationship | Candidates may be tested on their ability to:
 - calculate a rate from a graph, e.g. rate of transpiration |
| A.3.6 Draw and use the slope of a tangent to a curve as a measure of rate of change | Candidates may be tested on their ability to:
 - use this method to measure the gradient of a point on a curve, e.g. amount of product formed plotted against time when the concentration of enzyme is fixed |
<table>
<thead>
<tr>
<th>Mathematical skills</th>
<th>Exemplification of mathematical skill in the context of AS Level Biology (assessment is not limited to the examples given below)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v) A.4 – geometry and trigonometry</td>
<td></td>
</tr>
</tbody>
</table>
| A.4.1 Calculate the circumferences, surface areas and volumes of regular shapes | Candidates may be tested on their ability to:
- calculate the circumference and area of a circle
- calculate the surface area and volume of rectangular prisms, of cylindrical prisms and of spheres
- e.g. calculate the surface area or volume of a cell |
Appendix 6: Command words used in examination papers

The following table lists the command words used in the external assessments.

<table>
<thead>
<tr>
<th>Command word</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add/Label</td>
<td>Requires the addition or labelling to a stimulus material given in the question, for example labelling a diagram or adding units to a table.</td>
</tr>
<tr>
<td>Assess</td>
<td>Give careful consideration to all the factors or events that apply and identify which are the most important or relevant. Make a judgement on the importance of something, and come to a conclusion where needed.</td>
</tr>
<tr>
<td>Calculate</td>
<td>Obtain a numerical answer, showing relevant working. If the answer has a unit, this must be included.</td>
</tr>
<tr>
<td>Comment on</td>
<td>Requires the synthesis of a number of variables from data/information to form a judgement.</td>
</tr>
<tr>
<td>Compare and contrast</td>
<td>Looking for the similarities and differences of two (or more) things. Should not require the drawing of a conclusion. Answer must relate to both (or all) things mentioned in the question. The answer must include at least one similarity and one difference.</td>
</tr>
<tr>
<td>Complete</td>
<td>Requires the completion of a table/diagram.</td>
</tr>
<tr>
<td>Criticise</td>
<td>Inspect a set of data, an experimental plan or a scientific statement and consider the elements. Look at the merits and faults of the information presented and support judgements made by giving evidence.</td>
</tr>
<tr>
<td>Deduce</td>
<td>Draw/reach conclusion(s) from the information provided.</td>
</tr>
<tr>
<td>Describe</td>
<td>To give an account of something. Statements in the response need to be developed as they are often linked but do not need to include a justification or reason.</td>
</tr>
<tr>
<td>Determine</td>
<td>The answer must have an element which is quantitative from the stimulus provided, or must show how the answer can be reached quantitatively. To gain maximum marks there must be a quantitative element to the answer.</td>
</tr>
<tr>
<td>Devise</td>
<td>Plan or invent a procedure from existing principles/ideas.</td>
</tr>
<tr>
<td>Command word</td>
<td>Definition</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>Discuss</td>
<td>- Identify the issue/situation/problem/argument that is being assessed within the question</td>
</tr>
<tr>
<td></td>
<td>- Explore all aspects of an issue/situation/problem/argument</td>
</tr>
<tr>
<td></td>
<td>- Investigate the issue/situation etc by reasoning or argument.</td>
</tr>
<tr>
<td>Draw</td>
<td>Produce a diagram either using a ruler or using freehand.</td>
</tr>
<tr>
<td>Evaluate</td>
<td>Review information then bring it together to form a conclusion, drawing on evidence, including strengths,</td>
</tr>
<tr>
<td></td>
<td>weaknesses, alternative actions, relevant data or information. Come to a supported judgement of a subject’s qualities and relation to its context.</td>
</tr>
<tr>
<td>Explain</td>
<td>An explanation requires a justification/exemplification of a point. The answer must contain some element of reasoning/ justification, this can include mathematical explanations.</td>
</tr>
<tr>
<td>Give/State/Name</td>
<td>All of these command words are really synonyms. They generally all require recall of one or more pieces of information.</td>
</tr>
<tr>
<td>Give a reason/reasons</td>
<td>When a statement has been made and the requirement is to give only the reasons why.</td>
</tr>
<tr>
<td>Identify</td>
<td>Usually requires some key information to be selected from a given stimulus/resource.</td>
</tr>
<tr>
<td>Justify</td>
<td>Give evidence to support (either the statement given in the question or an earlier answer).</td>
</tr>
<tr>
<td>Plot</td>
<td>Produce a graph by marking points accurately on a grid from data that is provided and then drawing a line of best fit through these points. A suitable scale and appropriately labelled axes must be included if these are not provided in the question.</td>
</tr>
<tr>
<td>Predict</td>
<td>Give an expected result.</td>
</tr>
<tr>
<td>Show that</td>
<td>Verify the statement given in the question.</td>
</tr>
<tr>
<td>Sketch</td>
<td>Produce a freehand drawing. For a graph this would need a line and labelled axis with important features indicated, the axis are not scaled.</td>
</tr>
<tr>
<td>State what is meant by</td>
<td>When the meaning of a term is expected but there are different ways of how these can be described.</td>
</tr>
<tr>
<td>Write</td>
<td>When the questions ask for an equation.</td>
</tr>
</tbody>
</table>