
 

 

 

Uncertainties and practical work 

The aim of physics in studying natural phenomena is to develop explanations based on 
empirical evidence. Hence there is a central concern about the quality of evidence and of 
the explanations that are based on it.  This involves an appreciation of the causes of 
uncertainties that can arise in practical work and how they should be dealt with, both in 
planning an experiment to minimise these uncertainties and in forming a valid 
conclusion.   

There is no practical examination in this qualification and a set of practical skills has 
been identified as appropriate for indirect assessment.  Practical skills should be 
developed by carrying out practical work throughout the course, for example by carrying 
out the Core Practicals listed in the Specification.  The assessment of these skills will be 
through examination questions, in particular for Unit 3: Practical Skills in Physics I and 
Unit 6: Practical Skills in Physics II. 

It is clearly important that the words used within the practical context have a precise 
and scientific meaning as distinct from their everyday usage.  The terms used for this 
assessment will be those described in the publication by the Association for Science 
Education (ASE) entitled The Language of Measurement (ISBN 9780863574245). In 
adopting this terminology, it should be noted that certain terms will have a meaning 
different to that in the previous specification. In accordance with common practice, 
this qualification will adopt the Uncertainty Approach to measurement. Using this 
approach assumes that the measurement activity produces an interval of reasonable 
values together with a statement of the confidence that the true value lies within this 
interval. 

The following Glossary is a selection of terms from the list in The Language of 
Measurement published by ASE (ISBN 9780863574245). 
 



 

Glossary 

Term Meaning and notes 

Validity A measurement is valid if it measures what it is supposed to be 
measuring – this depends both on the method and the instruments. 

True value The value that would have been obtained in an ideal measurement – 
with the exception of a fundamental constant the true value is 
considered unknowable. 

Accuracy A measurement result is considered accurate if it is judged to be close 
to the true value. It is a quality denoting the closeness of agreement 
between measurement and true value – it cannot be quantified and is 
influenced by random and systematic errors. 

Precision  A quality denoting the closeness of agreement (consistency) between 
values obtained by repeated measurement – this is influenced only by 
random effects and can be expressed numerically by measures such 
as standard deviation. A measurement is precise if the values ‘cluster’ 
closely together. 

Repeatability The precision obtained when measurement results are obtained by a 
single operator using a single method over a short timescale. A 
measurement is repeatable when similar results are obtained by 
students from the same group using the same method. Students can 
use the precision of their measurement results to judge this. 

Reproducibility 
 
 
 
 
Uncertainty 

The precision obtained when measurement results are obtained by 
different operators using different pieces of apparatus. A 
measurement is reproducible when similar results are obtained by 
students from different groups using different methods or apparatus. 
This is a harder test of the quality of data. 
 
The interval within which the true value can be considered to lie with a 
given level of confidence or probability – any measurement will have 
some uncertainty about the result, this will come from variation in the 
data obtained and be subject to systematic or random effects. This 
can be estimated by considering the instruments and the method and 
will usually be expressed as a range such as 20 °C ± 2 °C. The 
confidence will be qualitative and based on the goodness of fit of the 
line of best fit and the size of the percentage uncertainty. 

Error The difference between the measurement result and the true value if 
a true value is thought to exist. This is not a mistake in the 
measurement. The error can be due to both systematic and random 
effects and an error of unknown size is a source of uncertainty. 

Resolution The smallest measuring interval and the source of uncertainty in a 
single reading. 

Significant 
figures (SF) 

The number of SF used in recording the measurements depends on 
the resolution of the measuring instruments and should usually be the 
same as given in the instrument with the fewest SF in its reading. 

 



 

 

Uncertainties in practice 

What are uncertainties and why are they important? 

When you repeat a measurement you often get different results. There is an 
uncertainty in the measurement that you have taken.  It is important to be able to 
determine the uncertainty in measurements so that its effect can be taken into 
consideration when drawing conclusions about experimental results. The uncertainty 
might be the resolution of the instrument or, if the readings were repeated, the 
uncertainty might be half the range of the repeats.  If the uncertainty is predictable, 
i.e. it is systematic, then the uncertainty should be subtracted from each reading, for 
example if there is a zero error on an instrument. 

Recording data 

Results should be recorded to the resolution of the measuring instrument which means 
there will be a consistent number of decimal places for the readings for any one variable.  
If raw data goes over a power of ten we would not penalise a mixture of significant 
figures. When data is processed, these values should be recorded to a consistent number 
of significant figures which is usually 3 as this is what we can usually confidently plot on 
a graph.  

Calculating uncertainties 

There are several techniques that will produce an estimate of the uncertainty in the 
value of the mean.  Since we are expecting students to produce an estimate of the 
uncertainty any suitable value that indicates half the range is acceptable. 

Example:  A student measures the diameter of a metal canister using a ruler 
graduated in mm and records these results: 

 
Diameter / mm 

Reading 1 Reading 2 Reading 3 Mean 
66 65 61 64 

The uncertainty in the mean value (64 mm) can be calculated as follows: 

a. Using the half range 

The range of readings is 61 mm – 66 mm so half the range is used to determine the 
uncertainty. 

Uncertainty in the mean diameter= (66 mm – 61 mm)/2 = 2.5 mm 
Therefore, the diameter of the metal canister is 64 mm ± 2.5 mm. 

Since a ruler graduated in mm could easily be read to ± 0.5 mm, it is acceptable to 
quote the uncertainty as ± 2.5 mm for this experiment. 

b. Using the reading furthest from the mean 

In this case, the measurement of 61 mm is further from the average value than 66 mm 
therefore we can use this value to calculate the uncertainty in the mean. 

Uncertainty in the mean diameter= 64 mm – 61 mm = 3 mm. 
Therefore, the diameter of the metal canister is 64 mm ± 3 mm. 



 

 

c. Using the resolution of the instrument 

This is used if a single reading is taken or if repeated readings have the same value. This 
is because there is an uncertainty in the measurement because the instrument used to 
take the measurement has its own limitations.  If the three readings obtained above 
were all 64 mm then the value of the diameter being measured lies somewhere between 
63.5 mm and 64.5 mm since a metre rule could easily be read to half a millimetre.  In 
this case, the uncertainty in the diameter is 0.5 mm. 

Therefore, the diameter of the metal canister is 64 mm ± 0.5 mm. 

This also applies to digital instruments. An ammeter records currents to 0.1 A. A current 
of 0.36 A would be displayed as 0.4 A, and a current of 0.44 A would also be displayed as 
0.4 A. The resolution of the instrument is 0.1 A but the uncertainty in a reading is 0.05 A. 

Calculating percentage uncertainties 

The percentage uncertainty in a measurement can be calculated using: 

Percentage uncertainty = (Uncertainty of measurement/Measurement) × 100% 

In the above example the percentage uncertainty in the diameter of the metal canister is: 

Percentage uncertainty = (3/64) × 100% = 4.7% 

Often the radius would be used in a calculation, for example in a calculation of volume.  
In this case, the percentage uncertainty for the radius of the canister is the same as its 
diameter, i.e. 4.7%, and not half of the percentage uncertainty. This is one reason why 
the percentage uncertainty in a measurement is useful.  

Additionally, the value is less than 5%, which shows that the measurement is probably 
repeatable.  Note that a percentage uncertainty would normally be quoted to 1 or 2 sf. 

Compounding uncertainties 

Calculations often use more than one measurement.  Each measurement will have its 
own uncertainty, so it is necessary to combine the uncertainties for each measurement 
to calculate the overall uncertainty in the calculation provided all the measured 
quantities are independent of one another. 

There are three methods of compounding uncertainties depending on whether the 
measurements in a calculation are raised to a power, multiplied/divided, or 
added/subtracted. 

a. Raising a measurement to a power 

If a measurement is raised to a power, for example squared or cubed, then the 
percentage uncertainty is multiplied by that power to give the total percentage 
uncertainty. 

Example:  A builder wants to calculate the area of a square tile.  He uses a rule to 
measure the two adjacent sides of a square tile and obtains the following results: 

Length of one side = 84 mm ± 0.5 mm 

Length of perpendicular side = 84 mm ± 0.5 mm 

The percentage uncertainty in the length of each side of this square tile is given by:  

Percentage uncertainty = (0.5/84) × 100% = 0.59 % = 0.6 % 

The area of the tile A is given by A = 84 × 84 = 7100 mm2 



 

 

Note that this is to 2 sf since the measurements are to 2 sf. 

The percentage uncertainty in the area of the square tile is calculated by multiplying the 
percentage uncertainty in the length by 2. 

Percentage uncertainty in A = 2 × 0.6% = 1.2% 

Therefore the uncertainty in A = 7100 × 1.2% = 85 mm2 

So A = 7100 mm2 ± 1.2% or A = 7100 mm2 ± 85 mm2 

b. Multiplying or dividing measurements 

The total percentage uncertainty is calculated by adding together the percentage 
uncertainties for each measurement. 

Example:  A metallurgist is determining the purity of a sample of an alloy that is in 
the shape of a cube by determining the density of the material. 

The following readings are taken: 

Length of each side of the cube= 24.0 mm ± 0.5 mm 

Mass of cube = 48.23 g ± 0.05 g 

She calculates (i) the density of the material and (ii) the percentage uncertainty in the 
density of the material. 

(i) Density of alloy  = mass / volume = mass / length3 

= (48.23 x 10−3 kg) / (24.0 x 10-3 m)3 = 3490 kg m−3 

(ii) Percentage uncertainty in the length = 0.5 / 24.0 × 100% = 2.1% 

Percentage uncertainty in the mass = 0.05/48.23 × 100% = 0.1% 

Percentage uncertainty in density= 3 × 2.1% +0.1% = 6.4% (or 6%) 

Therefore, the density of the material= 3490 kg m−3 ± 6% or 3490 kg m−3 ± 210 kg m−3 

Example: A student calculates the volume of a drinks can and the percentage 
uncertainty for the final value. 

The student determines that the radius of the metal can is 33 mm with an uncertainty of 
1% so the cross-sectional area A of the canister is: 

A = r2 =  (33)2 = 3.4 × 103 mm2 ± 2% 

Notice that the result has been expressed using scientific notation so that we can write 
down just two significant figures. The calculator answer (3421.1...) gives the impression 
of far more sf than is justified when the radius is only known to the nearest mm. 

The cross-sectional area was calculated by squaring the radius. Since two quantities 
have in effect been multiplied together, the percentage uncertainty in the value of the 
cross-sectional area is found by adding the percentage uncertainty of the radius to the 
percentage uncertainty of the radius – doubling it. 

The student measures the length L of the can = 115 mm ± 2 mm 

The volume V of the can is  

V = 3.4 × 103 mm2 × 115 mm = 3.9 × 105 mm3 = 3.9 × 10−4 m3 

The percentage uncertainty in this value is obtained by adding together an appropriate 
combination of the uncertainties 

Percentage uncertainty in L = (2/115) × 100% = 1.7 

Therefore, percentage uncertainty in V= 2% + 1.7% = 3.7% 

Volume V = 3.91 × 10−4 m3 ± 3.7% = 3.91 × 10-4 m3 ± 1.4 × 10-5 m3 



 

Again, an overall percentage uncertainty of less than 5% suggests that this 
determination of the volume of a can is repeatable. 

c. Adding or subtracting measurements 

When measurements are added or subtracted in a calculation then the uncertainty for 
each measurement is added to calculate the total uncertainty. 

Example:  A student wants to determine the thickness of the walls of a plastic pipe.  
He measures the internal and external diameters of the pipe using vernier calipers and 
obtains the following readings: 

 Internal diameter = 101.4 mm ± 0.1 mm 

 External diameter = 102.8 mm ± 0.3 mm 

The difference between these two measurements is 1.4 mm ± 0.4 mm 

Since the difference in the radius is required then both the diameter and the uncertainty 
must be divided by 2 (since the percentage uncertainty remains the same), therefore the 
thickness of the walls is 0.7 mm ± 0.2 mm. 

Using uncertainties in drawing conclusions 

Often an experiment will require a comparison to a known value.  This is when the 
uncertainty can be used to assess whether the measured value is accurate or not.  This 
can be achieved in the following ways: 

a. Calculating maximum and minimum values 

The final uncertainty can be used to determine the range in which the measured value 
may lie.  If the known value lies within this range then we can say that the measured 
value is accurate. 

Example:  A student used a simple pendulum to obtain a value of g = 10.1 m s−2.  
The experimental percentage uncertainty was calculated as 4%.   

Minimum value of g = 10.1 − (10.1 × 4%) = 9.7 m s−2 

Since the accepted value of g = 9.81 m s−2 lies above the minimum value, then we can 
conclude that the measured value of g is accurate. 

This method should always be used when the percentage uncertainty in the value is 
known. 

b. Calculating a percentage difference 

If the measured value has been determined from a graph and there is no information 
about the percentage uncertainty of the measured value, then percentage difference can 
be used to comment on accuracy. If the percentage difference is less than 5%, then this 
is an indication that the result is accurate.  
In the above example, the percentage difference is calculated as: 

 Percentage difference = (10.1−9.81)/9.81 × 100% = 3%  

As this is less than 5% we can conclude that the measured value of g is accurate. 

c. Observations from graphs 

There is no expectation that error bars should be added to graphs.  
If a straight-line graph through the origin is expected but the line of best fit of the 
plotted points does not pass through the origin, then this is an indication of a systematic 
error. If there is a large scatter of points around the line of best fit this is an indication of 
a large uncertainty possibly due to random errors. 


