Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world’s leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We’ve been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013
Publications Code UA037005
All the material in this publication is copyright © Pearson Education Ltd 2013
General Marking Guidance

• All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

• Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

• Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.

• There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.

• All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate’s response is not worthy of credit according to the mark scheme.

• Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

• Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
1. The total number of marks for the paper is 75.

2. The Edexcel Mathematics mark schemes use the following types of marks:
 - **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - **A** marks: accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - **B** marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.

3. Abbreviations

 These are some of the traditional marking abbreviations that will appear in the mark schemes:
 - bod – benefit of doubt
 - ft – follow through
 - the symbol \(\checkmark \) will be used for correct ft
 - cao – correct answer only
 - cso - correct solution only. There must be no errors in this part of the question to obtain this mark
 - isw – ignore subsequent working
 - awrt – answers which round to
 - SC: special case
 - oe – or equivalent (and appropriate)
 - dep – dependent
 - indep – independent
 - dp decimal places
 - sf significant figures
 - \(\star \) The answer is printed on the paper
 - \[\square \] The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.

6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

8. In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate’s response may differ from the final mark scheme.
<table>
<thead>
<tr>
<th>Question Number</th>
<th>Scheme</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$H_0 : \sigma^2 = 2.4^2$ $H_1 : \sigma^2 \neq 2.4^2$</td>
<td>B1</td>
<td></td>
</tr>
<tr>
<td>$s^2 = \frac{1414.08 - 10 \times (113.4)^2}{9} = 14.236$</td>
<td>M1</td>
<td></td>
</tr>
<tr>
<td>$\chi^2 = \frac{9 \times 14.236}{2.4^2} = 22.24375$</td>
<td>A1</td>
<td></td>
</tr>
<tr>
<td>Critical Value $\chi^2(0.025) = 19.023$</td>
<td>B1</td>
<td></td>
</tr>
<tr>
<td>Significant result, there is evidence of a change in standard deviation or the data do not support George’s belief</td>
<td>A1</td>
<td>(7)</td>
</tr>
</tbody>
</table>

Notes

1st B1 Both hypotheses, must use σ. Allow $H_0 : \sigma = 2.4$ $H_1 : \sigma \neq 2.4$

1st M1 correct method used

1st A1 awrt 14.2

2nd M1 $\chi^2 = \frac{9 \times "their s^2"}{2.4^2}$

2nd A1 awrt 22.2

2nd B1 for critical value, this should be compatible with their alternative hypothesis (16.919 for one tail test)

3rd A1 ft fully correct solution only
<table>
<thead>
<tr>
<th>Question Number</th>
<th>Scheme</th>
<th>Marks</th>
</tr>
</thead>
</table>
| 2. (a) | $d =$ Jan - June: -2, 1, -3, 2, -2, 3, 2, 2
$d = 0.375, \sum d^2 = 39 \Rightarrow s^2 = 5.4107... \text{ or } s = 2.326...$
$t_\gamma(0.025) = 2.365$
Confidence Interval: $0.375 \pm 2.365 \frac{2.326...}{\sqrt{8}} = (-1.57, 2.32)$ (o.e.) | M1, M1, B1 |
| (b) | $H_0: \mu_D = 0 \quad H_1: \mu_D \neq 0$
Comment that 0 is in the interval
Not sig, no evidence of a change in **mean time to assemble component** | B1, M1, A1 (7) |

Notes

| (a) | 1st M1 for attempting differences
2nd M1 for attempting \overline{d}
3rd M1 for attempting s_d^2, correct expression with their $\sum d^2$ and \overline{d} or correct calculation (to 2 sf or better)
4th M1 for use of a correct CI formula, using a value for t and ft their values.
1st A1 for lower limit of -1.57 or -2.32
2nd A1 for corresponding upper limit | S.C. Allow A1A1 for (0, 2.32) |
| (b) | B1 for both hypotheses using μ_D
M1 for a comment about 0 being in (or out) of their interval
A1 contextual conclusion – must include assemble components | S.C. If they have used difference in means test in part (a) to get the confidence interval then award the B1 for $H_0: \mu_x - \mu_y = 0 \quad H_1: \mu_x - \mu_y \neq 0$ or the correct hypotheses. |
<table>
<thead>
<tr>
<th>Question Number</th>
<th>Scheme</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. (a)</td>
<td>$H_0: \sigma^2_A = \sigma^2_B \quad H_1: \sigma^2_A \neq \sigma^2_B$</td>
<td>B1</td>
</tr>
<tr>
<td></td>
<td>$F = \frac{s_B^2}{s_A^2} = \frac{4.37^2}{4.24^2} = 1.0622...$</td>
<td>M1A1</td>
</tr>
<tr>
<td></td>
<td>$F_{12,6} (0.01) = 7.72$</td>
<td>B1</td>
</tr>
<tr>
<td></td>
<td>Not sig, so no evidence of a difference in variances</td>
<td>A1ft (5)</td>
</tr>
<tr>
<td>(b)</td>
<td>$H_0: \mu_A = \mu_B \quad H_1: \mu_A < \mu_B$</td>
<td>B1</td>
</tr>
<tr>
<td></td>
<td>$s_p^2 = \frac{6 \times 4.24^2 + 12 \times 4.37^2}{18} = 18.7238 \quad \text{or} \quad s_p = 4.327...$</td>
<td>M1</td>
</tr>
<tr>
<td></td>
<td>$t = \pm \frac{14.31 - 8.43}{8.43} = \pm 2.8985... \quad \text{awrt 2.9}$</td>
<td>M1A1</td>
</tr>
<tr>
<td></td>
<td>$t_{18} (0.01) = 2.552$</td>
<td>B1</td>
</tr>
<tr>
<td></td>
<td>sig, there is evidence to support archaeologist’s claim or there is evidence that bricks for site B have higher mean compression strength than those from site A.</td>
<td>A1ft (6)</td>
</tr>
<tr>
<td>(c)</td>
<td>The test in (b) requires $\sigma^2_A = \sigma^2_B$ and the test in part (a) shows that this is a reasonable assumption. (o.e.)</td>
<td>B1 (1)</td>
</tr>
</tbody>
</table>

Notes

(a) M1 for use of a correct formula Allow $F = \frac{s_A^2}{s_B^2} = \frac{4.24^2}{4.37^2} = 0.941...$ with 0.1295..

(b) B1 if A and B not used it must be clear which is A and which is B

1st M1 for attempt to calculate s_p or s^2_p

2nd M1 for attempt correct test statistic

2nd A1 ft need archaeologist’s or compression

(c) Need to refer to ‘allows us to assume variances the same’ and this is needed in for test. oe
<table>
<thead>
<tr>
<th>Question Number</th>
<th>Scheme</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. (a)</td>
<td>$E(X) = \mu = \frac{2a-a}{2} = \frac{a}{2}$; $E(\bar{X}) = \mu = \frac{a}{2}$ so biased estimator for a</td>
<td>M1; A1</td>
</tr>
<tr>
<td></td>
<td>$\text{Bias} = \frac{a}{2} - a = -\frac{a}{2}$</td>
<td>B1 (accept ±)</td>
</tr>
<tr>
<td>(b)</td>
<td>$k = 2$</td>
<td>1</td>
</tr>
<tr>
<td>(c)</td>
<td>$\text{Var}(X) = \sigma^2 = \frac{(2a-a)^2}{12} = \frac{9a^2}{12} = \frac{3a^2}{4}$; $\text{Var}(\bar{X}) = \frac{\sigma^2}{2}$</td>
<td>B1; B1</td>
</tr>
<tr>
<td></td>
<td>$\text{Var}(Y) = k^2 \text{Var}(\bar{X}) = 4 \times \frac{\sigma^2}{2} = 4 \times \frac{3a^2}{4 \times 2} = \frac{3}{2} a^2$</td>
<td>M1, A1</td>
</tr>
<tr>
<td>(d)</td>
<td>$E(M) = \int \frac{2(x+a)}{9a^2} , dx = \left[\frac{2x^3 + ax^2}{27a^2} \right]_{a}^{\gamma} = \left(\frac{16a + 4a}{27} + \frac{a}{9} \right) - \left(\frac{-2a + a}{27} + \frac{a}{9} \right) = a$</td>
<td>M1A1, M1d</td>
</tr>
<tr>
<td></td>
<td>So $E(M) = a$ and therefore M is an unbiased estimator for a</td>
<td>A1 (4)</td>
</tr>
<tr>
<td>(e)</td>
<td>$\text{Var}(M) = \frac{3}{2} a^2 - a^2 = \frac{1}{2} a^2$</td>
<td>B1</td>
</tr>
<tr>
<td>(f)</td>
<td>$\text{Var}(M) < \text{Var}(Y)$, so M is the better estimator of a</td>
<td>M1, A1</td>
</tr>
<tr>
<td>(g)</td>
<td>Maximum value = 5</td>
<td>B1ft</td>
</tr>
</tbody>
</table>

Notes

- **(a)** M1 for use of formula or integration or symmetry to find $E(\bar{X})$
- **(c)** 1st B1 for use of formula for variance
 2nd B1 for use of $\frac{\sigma^2}{n}$ formula
 M1 for $k^2 \text{Var}(\bar{X})$ and ft their k
- **(d)** 1st M1 for attempt at correct integration of correct expression
 1st A1 for correct integration
 2nd M1d dependent on previous M, for attempting to use correct limits
 2nd A1 need statement that M is therefore unbiased
- **(f)** M1 for comparison of their $\text{Var}(Y)$ and their $\text{Var}(M)$
- **(g)** B1ft for calculation of their estimate based on their choice in (f).
 If they choose Y answer is 4 (or twice their k)
5. (a) \(Y = \text{no. of organisms in 20 ml. } Y \sim \text{Po}(2\lambda) \)
Size = \(P(Y \geq 4 \mid Y \sim \text{Po}(2)) = 1 - P(Y \leq 3) = 1 - 0.8571 = 0.1429 \)
\(\) \(\) \(\text{M1, A1} \) (2)

(b) \(P(\text{Type II error}) = 1 - P(Y \geq 4 \mid Y \sim \text{Po}(5)) = P(Y \leq 3) = 0.2650 \)
\(\) \(\) \(\text{M1, A1} \) (2)

(c) \(X = \text{no. of organisms in 10 ml. } X \sim \text{Po}(\lambda) \)
Power = \(P(X \geq 2) + P(X=1) \times P(X \geq 2) \)
= \(P(X \geq 2) [1 + P(X = 1)] = [1 - e^{-\lambda}(1 + \lambda)] \times [1 + \lambda e^{-\lambda}] \)
= \(1 - e^{-\lambda} - \lambda e^{-\lambda} + \lambda e^{-\lambda} - \lambda(1 + \lambda) e^{-2\lambda} = 1 - e^{-\lambda} - \lambda(1 + \lambda) e^{-2\lambda} \)
\(\) \(\) \(\) \(\) \(\text{M1A1} \) (4)

(d) \(r = 0.92 \)
\(\) \(\) \(\text{B1} \) (1)

(e) See Graph paper

<table>
<thead>
<tr>
<th>Question Number</th>
<th>Scheme</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f)</td>
<td>Expected time for statistician’s test: (30 \times P(X = 1) + 15 \times [1 - P(X = 1)])</td>
<td>M1</td>
</tr>
</tbody>
</table>

![Graph showing relationship between Power and λ]
\[= 30\lambda e^{-\lambda} + 15(1 - \lambda e^{-\lambda}) = 15(1 + \lambda e^{-\lambda})\]

slower if: \(15(1 + \lambda e^{-\lambda}) > 20\), \(\Rightarrow \lambda e^{-\lambda} > \frac{1}{3}\)

\(\lambda e^{-\lambda}\) with \(\lambda = 1\) is 0.36..., with \(\lambda = 2\) is 0.27...so second (statisticians) test is slower if \(\lambda = 1\) but faster for \(\lambda = 2\). Second test is more powerful for all \(\lambda\).

Choose second test - more powerful and faster for \(\lambda \geq 2\)

<table>
<thead>
<tr>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) M1 for correct expression for size using Po(2)</td>
</tr>
<tr>
<td>(b) M1 for correct expression using Po(5)</td>
</tr>
</tbody>
</table>
| (c) 1st M1 for a correct expression in terms of probabilities
Alternate answer \(1 - [P(X = 0) + P(X = 1) \times P(X \leq 1)]\)
2nd M1 for an attempt at a correct equation in \(\lambda\)
1st A1 for a correct expression in \(\lambda\) |
| (e) 1st B1 points
2nd B1 curve (or straight lines) |
| (f) 1st M1 for an attempt to calculate expected time
Alternate method \(15 + 15 \times P(X = 1)\)
1st A1 for a correct expression in terms of \(\lambda\)
2nd M1 for attempt at correct inequality |
| (g) 1st B1 for a comment about power & timings
2nd B1 for selecting second test |

<table>
<thead>
<tr>
<th>Question Number</th>
<th>Scheme</th>
</tr>
</thead>
</table>
| 6. (a) | \(H_0: \sigma_A^2 = \sigma_B^2\)
\(H_1: \sigma_A^2 \neq \sigma_B^2\)
\(s_A^2 = (0.25)^2 = 0.0625\)
\(s_B^2 = (0.178885...)^2 = 0.032\) | B1B1 |
$F = \frac{0.0625}{0.032} = 1.953\ldots$

Critical Value: $F_{3,5} = 5.41$

not sig, samples come from populations with common variance

$$s_p^2 = \frac{3 \times 0.25^2 + 5 \times 0.032}{8} = 0.04343\ldots = (0.0284\ldots)^2$$

Use $\frac{8s_p^2}{\sigma^2} \sim \chi^2$

$$1.344 < \frac{8 \times 0.0434\ldots}{\sigma^2} < 21.955$$

99% confidence interval is (0.0158, 0.259)