Pearson Edexcel Level 3 Advanced Subsidiary GCE in Chemistry (8CH0) ## **Data Booklet** Issue 1 Summer 2016 Edexcel qualifications are awarded by Pearson, the UK's largest awarding body offering academic and vocational qualifications that are globally recognised and benchmarked. For further information, please visit our qualification websites at www.qualifications.pearson.com/en/home.html Alternatively, you can get in touch with us using the details on our contact us page at www.qualifications.pearson.com/en/support/contact-us.html #### **About Pearson** Pearson is the world's leading learning company, with 40 000 employees in more than 70 countries working to help people of all ages to make measurable progress in their lives through learning. We put the learner at the centre of everything we do, because wherever learning flourishes, so do people. Find out more about how we can help you and your learners at: www.pearson.com/uk This Data Booklet is available on our Chemistry 2015 webpage. Centres will be sent copies of the Data Booklet for the first examination series. Centres can make additional fresh copies by printing the Data Booklet from our website. Candidates must use an unmarked copy of the Data Booklet in examinations. #### **Acknowledgement of source** The data used in the Data Booklet is derived from the *Nuffield Advanced Science*, *Revised Book of Data* (ISBN 058235448X), Nuffield Foundation. # **Contents** | Introduction | | |------------------------------------|---| | Physical constants | 1 | | Pauling electronegativities | 1 | | Infrared spectroscopy | 2 | | The Periodic Table of the Flements | 3 | ## Introduction This Data Booklet is for use with the Pearson Edexcel Level 3 Advanced Subsidiary GCE in Chemistry (8CHO) assessments for papers 1 and 2. Students will be provided with a clean copy of this Data Booklet for these assessments, which should be kept under the same conditions as the assessment papers. Students may have a copy of this Data Booklet for their personal use in lessons and for homework, to allow them to become familiar with how to use it. #### **Physical constants** Avogadro constant (L) 6.02 x 10²³ mol⁻¹ Elementary charge (e) $1.60 \times 10^{-19} \text{ C}$ Gas constant (R) 8.31 J mol⁻¹ K⁻¹ Molar volume of a gas at room temperature and pressure (r.t.p.): 24 dm³ mol⁻¹ $1 \text{ dm}^3 = 1000 \text{ cm}^3 = 0.001 \text{ m}^3$ #### **Pauling electronegativities** #### **Pauling electronegativity index** | | | | | | | | Н | | | | | | | | | | He | |-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----| | | | | | | | | 2.1 | | | | | | | | | | | | Li | Be | | | | | | | | | | | В | С | Ν | 0 | F | Ne | | 1.0 | 1.5 | | | | | | | | | | | 2.0 | 2.5 | 3.0 | 3.5 | 4.0 | | | Na | Mg | | | | | | | | | | | Αl | Si | Р | S | Cl | Ar | | 0.9 | 1.2 | | | | | | | | | | | 1.5 | 1.9 | 2.1 | 2.5 | 3.0 | | | K | Ca | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr | | 0.8 | 1.0 | 1.3 | 1.5 | 1.6 | 1.6 | 1.5 | 1.8 | 1.8 | 1.8 | 1.9 | 1.6 | 1.6 | 2.0 | 2.0 | 2.4 | 2.8 | | | Rb | Sr | Υ | Zr | Nb | Мо | Tc | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | I | Xe | | 0.8 | 1.0 | 1.2 | 1.3 | 1.6 | 2.1 | 1.9 | 2.2 | 2.2 | 2.2 | 1.9 | 1.6 | 1.7 | 1.9 | 1.9 | 2.1 | 2.5 | | | Cs | Ba | La | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | Τl | Pb | Bi | Po | At | Rn | | 0.7 | 0.9 | 1.1 | 1.3 | 1.5 | 2.3 | 1.9 | 2.2 | 2.2 | 2.2 | 2.5 | 2.0 | 1.6 | 1.8 | 1.9 | 2.0 | 2.2 | | ## Infrared spectroscopy ### Correlation of infrared absorption wavenumbers with molecular structure | Group | Wavenumber range/cm ⁻¹ | |---|--| | C-H stretching vibrations Alkane Alkene Alkyne Arene Aldehyde | 2962-2853
3095-3010
3300
3030
2900-2820 and 2775-2700 | | C-H bending variations Alkane Arene 5 adjacent hydrogen atoms 4 adjacent hydrogen atoms 3 adjacent hydrogen atoms 2 adjacent hydrogen atoms 1 adjacent hydrogen atom | 1485-1365
750 and 700
750
780
830
880 | | N-H stretching vibrations Amine Amide | 3500-3300
3500-3140 | | O-H stretching vibrations Alcohols and phenols Carboxylic acids | 3750-3200
3300-2500 | | C=C stretching vibrations Isolated alkene Arene | 1669-1645
1600, 1580, 1500, 1450 | | C=O stretching vibrations Aldehydes, saturated alkyl Ketones alkyl Ketones aryl Carboxylic acids alkyl aryl Carboxylic acid anhydrides Acyl halides chlorides bromides Esters, saturated Amides | 1740-1720
1720-1700
1700-1680
1725-1700
1700-1680
1850-1800 and 1790-1740
1795
1810
1750-1735
1700-1630 | | Triple bond stretching vibrations C≡N C≡C | 2260-2215
2260-2100 | The Periodic Table of Elements | 0 (8) | (78)
4.0
He
helium
2 | 20.2 | N | neon
10 | 39.9 | Αľ | argon
18 | 83.8 | 궃 | krypton
36 | 131.3 | Xe | xenon | 24 | [222] | ~ | radon
86 | | ted | | | | | | | | |-------|---|----------------------|---------------|--------------------------------|------|----|------------------|------|----------|-----------------|-------|--------------|----------------|----|-------|----------------|-----------------|-------|---|-----|-------|---------------------|-----------------------|-------|---------------------------|------| | 7 | (17) | 19.0 | L | fluorine
9 | 35.5 | บ | chlorine
17 | 79.9 | Br | bromine
35 | 126.9 | Ι | iodine | 33 | [210] | ¥ | astatine
85 | | een repor | | 175 | Γn | lutetium
71 | [257] | Lr
Jawrencium | 103 | | 9 | (16) | 16.0 | 0 | oxygen
8 | 32.1 | s | sulfur
16 | 79.0 | Se | selenium
34 | 127.6 | Б | tellurium | 70 | [506] | & [| polonium
84 | | 116 have t | | 173 | ΥÞ | ytterbium
70 | [254] | No
mobelium | 102 | | 22 | (15) | 14.0 | z | nitrogen
7 | 31.0 | ۵ | phosphorus
15 | 74.9 | As | arsenic
33 | 121.8 | Sb | antimony | 5 | 209.0 | <u>Б</u> | bismuth
83 | | tomic numbers 112-116 hav | | 169 | T | thulium
69 | [526] | Md | 101 | | 4 | (14) | 12.0 | U | carbon | 28.1 | Si | silicon
14 | 72.6 | g | germanium
32 | 118.7 | Sn | ij. | 25 | 207.2 | <u>ዊ</u>] | lead
82 | | atomic nu | | 167 | Ē | erbium
68 | [253] | Fm
fermium | 100 | | м | (13) | 10.8 | ω | boron
5 | 27.0 | Ι¥ | aluminium
13 | 2.69 | g | gallium
31 | 114.8 | ū | indium | 44 | 204.4 | = = | thallium
81 | | Elements with atomic numbers 112-116 have been reported but not fully authenticated | | 165 | | holmium
67 | [254] | Cf Es | 66 | | | | | | | | | (12) | 65.4 | Zu | zinc
30 | 112.4 | <u>გ</u> | cadmium | 48 | 200.6 | Ŧ | mercury
80 | | | | 163 | ٥ | dysprosium
66 | [251] | | | | | | | | | | | (11) | 63.5 | J | copper 29 | 107.9 | Ag | silver | 4 | 197.0 | Ϋ́ | gold
79 | [272] | Rg | 111 | 159 | P | terbium
65 | [245] | Ber kelium | - 67 | | | | | | | | | (10) | 58.7 | Ë | nickel
28 | 106.4 | Pd | palladium | 40 | 195.1 | ₹ : | platinum
78 | [271] | Ds | | 157 | P 5 | gadolinium
64 | [247] | الله | | | | | | | | | | (6) | 58.9 | ප | cobalt
27 | 102.9 | | £ | 42 | 192.2 | - | iridium
77 | [368] | Mt | 109 | 152 | | europium
63 | [243] | Am | 95 | | | 1.0
H
hydrogen | | | | | | (8) | 55.8 | Fe | | 101.1 | | 풀 | 44 | 190.2 | S. | osmium
76 | [277] | Hserium | 108 | 150 | | samarium
62 | ľ | Pu
plutonium | 94 | | | | | | | | | (2) | 54.9 | ۸ | manganese
25 | [86] | | <u>fğ</u> | 43 | 186.2 | Se | rhenium
75 | | Bh | | [147] | Pm | promethium
61 | [237] | Np | 93 | | | | mass | poq | number | | | (9) | 52.0 | ъ | chromium
24 | 95.9 | Wo | molybdenum | 47 | 183.8 | ≥ | tungsten
74 | [997] | Seaborgiim | 106 | 144 | PX | neodymium
60 | | U | | | | Key | relative atomic mass | atomic symbol | name
atomic (proton) number | | | (5) | 50.9 | > | vanadium
23 | 92.9 | g | niobium | 4 | 180.9 | <u>a</u> | tantalum
73 | _ | Dp | | 141 | ዋ | praseodymium ne
59 | [231] | Pa
protactinium | 91 | | | | relat | atc | atomic | | | 4 | 47.9 | F | titanium
22 | 91.2 | Zr | zirconium | 40 | 178.5 | Ξ: | hafnium
72 | [261] | Rf | 104 | 140 | Ç | cerium
58 | 232 | thorium | 06 | | | | | | | | | (3) | 45.0 | Sc | scandium
21 | 88.9 | > | yttrium | ξ | 138.9 | ra* | lanthanum
57 | [227] | Ac* | 89 | | es | | | | | | 2 | (2) | 9.0 | Be | beryllium
4 | 24.3 | Mg | magnesium
12 | 40.1 | | calcium
20 | 87.6 | 'n | strontium | န | 137.3 | Ba | barium
56 | [526] | Ra | 88 | | * Lanthanide series | * Actinide series | | | | | - | (1) | 6.9 | = | lithium
3 | 23.0 | Na | sodium
11 | 39.1 | <u>×</u> | potassium
19 | 85.5 | & | rubidium
27 | 3/ | 132.9 | ტ . | caesium
55 | [223] | Fr
francium | 87 | | * Lant | * Actir | | | |