Core practical 9: Determine K_a for a weak acid

Objective			
 To determine K_a for a weak acid 			
Safety		Specification links	
•	Wear a lab coat and use eye protection.	Practical techniques 1, 3, 4, 6, 11 CPAC 10, 30, 3b, 30, 4b, 4b, 4b, 4b, 4b, 4b, 4b, 4b, 4b, 4b	
•	Tie long hair back. Sodium hydroxide solution is an irritant.	• CPAC 1a, 2a, 2b, 3a, 4a, 4b	
Procedure		Notes on procedure	
1. 2. 3. 4. 5.	Set up the datalogger to read the pH, or calibrate the pH meter. Pipette 25.0 cm³ of 0.1 mol dm⁻³ ethanoic acid solution into a 250 cm³ conical flask. Fill a burette with sodium hydroxide solution. Add two or three drops of phenolphthalein to the conical flask. Titrate the ethanoic acid with sodium hydroxide solution until the mixture <i>just</i> turns pink.	 Explain to students that titre values should be recorded to 2 decimal places with the second figure being 0 or 5 only. Explain to students that the titration should be repeated until concordant results are obtained. 	
6.	Pipette a further 25.0 cm ³ of 0.1 mol dm ⁻³ ethanoic acid solution into the 250 cm ³ conical flask.		

Answers to questions

7. Record the pH of this solution.

- 1. Depends on students' findings but the pH should be 4.77; so $[H^+] = 1.7 \times 10^{-5}$ mol dm⁻³
- 2. $1.7 \times 10^{-5} \,\text{mol dm}^{-3}$
- 3. Sources of uncertainty include inaccuracy of burette readings, and difficulty identifying the exact end-point. Read glassware from the bottom of the meniscus; use a white tile so you can see the colour change clearly.

Sample data

The pH of the solution will be 4.77, though students' results may vary.

Core practical 9: Determine K_a for a weak acid

Objective

To determine K_a for a weak acid

Chemistry

Safety

- Wear a lab coat and use eye protection.
- Tie long hair back.
- Sodium hydroxide solution is an irritant.

All the maths you need

- Use logarithms in relation to quantities that range over several orders of magnitude.
- Change the subject of an equation.
- Substitute numerical values into algebraic equations using appropriate units for physical quantities.

Equipment

- 100 cm³ of 0.1 mol dm⁻³ ethanoic acid solution
- 100 cm³ of 0.1 mol dm⁻³ sodium hydroxide solution
- datalogger and pH probe or pH meter
- stand, clamp and boss for pH probe
- 50 cm³ burette
- burette stand
- 250 cm³ conical flask
- 25 cm³ pipette and filler
- phenolphthalein indicator

Procedure

- 1. Set up the datalogger to read the pH, or calibrate the pH meter.
- 2. Pipette 25.0 cm³ of 0.1 mol dm⁻³ ethanoic acid solution into a 250 cm³ conical flask.
- 3. Fill a burette with sodium hydroxide solution.
- 4. Add two or three drops of phenolphthalein to the conical flask.
- 5. Titrate the ethanoic acid solution with sodium hydroxide solution until the mixture *just* turns pink.
- 6. Pipette a further 25.0 cm³ of 0.1 mol dm⁻³ ethanoic acid solution into the 250 cm³ conical flask.
- 7. Record the pH of this solution.

Analysis of results

• Record the pH of the solution after the second addition of ethanoic acid.

The ionisation of an acid is shown by:

Chemistry

$$HA_{(aq)} \rightleftharpoons H^{+}_{(aq)}$$

Because there is an equilibrium set up, an equilibrium constant, K_a , can be written:

$$K_a = \frac{[H^+][A^-]}{[HA]}$$

• The K_a value is an indication of acid strength. The larger the value of the K_a , the stronger the acid

 $A^{-}(aq)$

• The K_a of a weak acid can be measured by titrating a known volume of the acid against sodium hydroxide using phenolphthalein as an indicator. A further equal volume of acid is then added, and the pH of the resulting solution is measured. Because effectively half of the acid has been titrated:

$$[H^+] = [HA] = [A^-]$$

[A-] and [HA] can be cancelled in the K_a expression

And so
$$K_a = [H^+]$$

The pH value of the combined solutions can be converted to $[H^+]$ to give a K_a value.

Questions

- 1. Use the pH of your solution to calculate [H+].
- 2. Calculate a value of K_a for ethanoic acid.
- 3. What are some of the sources of uncertainty in this experiment? What can you do to overcome them?

Exam-style questions

1. Folic acid behaves as a weak acid – it can be represented as HA.

Write the equation for the ionisation of a weak acid HA in water. Write the terms *conjugate acid* and *conjugate base* under the relevant formulae for an acid–base pair in your equation.

(2)

2.

(a) Write the expression for the acidity constant K_a for the ionisation of folic acid.

(1)

(b) If $K_a = 5.0 \times 10^{-3} \text{ mol dm}^{-3}$, calculate p K_a .

(1)

(c) Calculate the pH of a 0.10 mol dm⁻³ solution of this acid.

(2)

Core practical 9: Determine K_a for a weak acid

Objective

To determine K_a for a weak acid

Safety

- Wear a lab coat and use eye protection.
- Consult CLEAPSS Hazcards® 38A and 91. Perform a risk assessment using up-to-date information before this practical is carried out.

Equipment per student/group	Notes on equipment
0 cm ³ of 0.1 mol dm ⁻³ ethanoic acid lution	Low hazard
	If prepared from fresh, remember that pure ethanoic acid is corrosive.
100 cm ³ of 0.1 mol dm ⁻³ sodium hydroxide solution	Irritant
datalogger and pH probe or pH meter	
stand, clamp and boss for pH probe	
50 cm ³ burette	
burette stand	
250 cm ³ conical flask	
25 cm ³ pipette and filler	
phenolphthalein indicator	

Notes