Mark Scheme (Results) Summer 2008

IGCSE

IGCSE Mathematics (4400) Paper 3H

Summer 2008 IGCSE Maths Mark Scheme - Paper 3H

Q	Working	Answer	Mark		Notes
1.	$\frac{17.28}{2.4}$		2	$M 1 \quad$ for 17.28 or 2.4 or $-0.114 \ldots$ seen	
		7.2		$A 1 \quad$ for 7.2 oe inc $7 \frac{1}{5}$ and $\frac{36}{5}$	

3. (a)	Enlargement scale factor 2 centre (1, 3)	3		B1 for enlargement, enlarge etc B1 for 2, $\times 2$, two, $\frac{2}{1}, 1: 2,2: 1$ B1 for (1,3) Condone omission of brackets but do not accept $\binom{1}{3}$	These marks are independent but award no marks if answer is not a single transformation
(b)	Reflection in the line $y=x$	2	B2	B1 for reflection, reflect etc B1 for $y=x$ oe inc eg 'in line from $(2,2)$ to $(5,5)$ ', 'in dotted line shown'	
					Total 5 marks

4.	$3+1$ or 4 seen		2	M1 for $3+1$ or 4 seen
		210		A1 for 210 cao

5. (a)(i)	1, 9, 17	2	B1	cao	Brackets not necessary
(ii)	1, 5, 9, 13, 17, 25, 33		B1	$\begin{aligned} & \text { cao } \\ & \text { (B0 if } 1,9 \text { or } 17 \text { repeated) } \end{aligned}$	
(b)	eg No members in common. The intersection is empty. None of the members of $A \& C$ are the same. They don't have the same numbers. No numbers are in both A and C.	1	B1		
					Total 3 marks

6.	$\tan x^{\circ}=\frac{3}{8}=0.375$		3		for tan for $\frac{3}{8}$ or 0.375	or M1 for sin and $\frac{3}{\sqrt{73} "}$ following correct Pythagoras and A1 for 0.3511... or M1 for cos and $\frac{8}{\sqrt{773 "}}$ following correct Pythagoras and A1 for 0.9363...
		20.6			for 20.6 or bet (Accept 20.556 more)	ted to 4 sig figs or
						Total 3 marks

7.	$\pi \times 7.8$ or $2 \pi \times 3.9$		2	M1	for $\pi \times 7.8$ or $2 \pi \times 3.9$	
		24.5		$\begin{array}{ll} \hline \text { A1 } & \text { for } 24.5 \text { or for answer which rounds } \\ \text { to } 24.49,24.50 \text { or } 24.51 \\ (\pi \rightarrow 24.5044 \ldots \\ & 3.14 \rightarrow 24.492 \\ & 3.142 \rightarrow 24.5076) \\ \hline \end{array}$		
						Total 2 marks

9. (a)	$\begin{aligned} & 7 x-7=5-2 x \\ & 7 x+2 x=5+7 \text { or } 9 x=12 \end{aligned}$		3		for $7 x-7$ seen for $7 x+2 x=5+7$ or $9 x=12$ or for $7 x+2 x=5+1$ or $9 x=6$ foll	$1=5-2 x$
		$1 \frac{1}{3} \text { oe }$			for $1 \frac{1}{3}$ oe inc $\frac{4}{3}, \frac{12}{9}, 1 . \dot{3}, 1.33$	
(b)(i)	$4 x \leq 16$		4	M1	for $4 x \leq 16$	
		$x \leq 4$		A1	for $x \leq 4$	
(ii)		1234			B1 for 3 correct and none wrong or for 4 correct and 1 wrong	
				Total 7 marks		

11. (a)		$60<p \leq 70$	1	B1	Accept 60-70	
(b)	$\begin{aligned} & 55 \times 7+65 \times 21+75 \times 15+85 \times 14+95 \times 3 \\ & \text { or } 385+1365+1125+1190+285 \text { or } 4350 \end{aligned}$		4	M1	for finding at least four products $f \times x$ consistently within intervals (inc end points) and summing them	
			M1	(dep) for use of halfway values $(55,65, \ldots)$ or $(55.5,65.5, \ldots)$		
	$\frac{" 4350 "}{60}$					$\frac{" 4350 "}{60}(\text { dep on } 1 \text { st M1) }$ for division by 60 or for $\frac{4380 "}{60}$ if $55.5,65.5, \ldots$ used
		72.5		A1	for 72.5 Award 4 marks for 73 if first two M marks awarded	
(c)	30 (or $301 / 2$) indicated on graph or stated		2	M1	for 30 (or $301 / 2$) indicated on graph or stated	
		124 or 125		A1	Accept any value in range 124-125 inc eg 124, 124.5, 125	
(d)	Use of $p=131$ on graph		2	M1	for use of $p=131$ shown on graph or implied by 47, 48 or 49 stated	
		≈ 12		A1	Accept any value in range 11-13 inc	
					Total 9 marks	

12.	3^{2} or 9 or value which rounds to 3.39 seen	2	$\mathrm{M1}$ for 3^{2} or 9 or value which rounds to 3.39 seen	
		36		$\mathrm{~A} 1 \quad$ for 36 cao

14. (a)		$5(2 y-3)$	1	B1	cao
(b)		$\begin{array}{r} 3 p q(3 p+ \\ 4 q) \end{array}$	2	B2	B1 for $3 p q(\ldots)$ or ...(3p+4q) or $3 p\left(3 p q+4 q^{2}\right)$ or $3 q\left(3 p^{2}+4 p q\right)$ or $p q(9 p+12 q)$ or $3\left(3 p^{2} q+4 p q^{2}\right)$ ie for two factors, one of which is $3 p q$ or $(3 p+4 q)$, or for correct, but incomplete, factorisation
(c)(i)		$(x-2)(x+$	3	B2	B1 for one correct factor or $(x+2)(x-8)$
(ii)		2, -8		B1	ft from (i) if two linear factors
					Total 6 marks

15. (a)(i)		57.5	2	B1for $57.5,57.4 \dot{4}, 57.499,57.4999$ etc but NOT for 57.49
(ii)		56.5		B1 for 56.5 Also accept 56.50

16. (a)	$\frac{5}{9} \times \frac{5}{9}$		2	M1 for $\frac{5}{9} \times \frac{5}{9}$		Sample space method - award 2 marks for a correct answer, otherwise no marks
		$\frac{25}{81}$		A1 for $\frac{25}{81}$ or 0.31 or	better	
(b)	$\frac{1}{9} \times \frac{1}{9}$ or $\frac{1}{81}$		3	M1 \quad for $\frac{1}{9} \times \frac{1}{9}$ or $\frac{1}{81}$	$\begin{gathered} \text { SC } \\ \text { M1 for } \frac{1}{9} \times \frac{1}{8} \text { or } \frac{1}{72} \end{gathered}$	Sample space method - award 3 marks for a correct answer, otherwise no marks
	$\frac{1}{9} \times \frac{1}{9} \times 4$ oe			M1 for $\frac{1}{9} \times \frac{1}{9} \times 4$ oe	M1 for $\frac{1}{9} \times \frac{1}{8} \times 4 \text { oe }$	
		$\frac{4}{81}$		A1 for $\frac{4}{81}$ or 0.05 or better		
				Total 5 marks		

17. (a)	$d=k \sqrt{h}$		3	M1 for $d=k \sqrt{h}$ but not for $d=\sqrt{h}$ Also award for $d=$ some numerical value $\times \sqrt{h}$	
	$54=15 k$			M	for $54=15 k$ Also award for $54=k \sqrt{225}$
		$3.6 \sqrt{h}$ oe		A1	for $3.6 \sqrt{h}$ oe Award 3 marks if answer is $d=k \sqrt{h}$ but k is evaluated as 3.6 oe in any part
(b)		28.8	1	B1	ft from " 3.6 " $\times 8$ except for $k=1$, if at least M1 scored in (a) (1 d.p. accuracy or better in follow through)
(c)	$\sqrt{h}=\frac{61.2}{\text { "3.6" }}$		2		for $\sqrt{h}=\frac{61.2}{3.6 "}$ except for $k=1$
		289		A1	cao
					Total 6 marks

18.	$\frac{a}{\sin 35^{\circ}}=\frac{6.8}{\sin 64^{\circ}}$		3	M1 for correct statement of Sine rule
	$a=\frac{6.8 \sin 35^{\circ}}{\sin 64^{\circ}}$			M1 for correct rearrangement
		4.34		A1 for 4.34 or 4.3395... rounded or truncated to 4 figures or more

20. (a)(i)	59	2	B1	cao
(ii)	```angle at the centreNone```		B1	Three key points must be mentioned 1. angle at centre/middle/O/origin 2. twice/double/ $2 \times$ or half $/ \frac{1}{2}$ as appropriate 3. angle at circumference/edge/perimeter (NOT e.g. angle R, angle $P R Q$, angle at top, angle at outside)

20. (b)	$180-(x+36)$ oe seen (possibly marked on diagram as size of $\angle A C B$)		5	B1 for $180-(x+36)$ oe seen, either on its own or as part of an equation (This mark may still be scored, even if brackets are later removed incorrectly.)			
						(Max of $2 M$ marks) \quad SCfor omission of brackets in $-(x+36)$ or theirincorrect removal	
	$\begin{aligned} & x=2(180-(x+36)) \\ & \text { or } x=2(180-x-36) \\ & \text { or } 180-(x+36)=\frac{x}{2} \\ & \text { or } 180-x-36=\frac{1}{2} x \end{aligned}$			M1		$\begin{aligned} & x=2(180-(x+36)) \\ & \text { or } x=2(180-x+36) \\ & \text { or } 180-x+36=\frac{1}{2} x \\ & \text { or } 180-36+x=\frac{1}{2} x \end{aligned}$	M1
	$\begin{aligned} & x=360-2 x-72 \\ & \text { or } x+\frac{1}{2} x=180-36 \end{aligned}$			M1		$x=360-2 x+72$ or $x+\frac{1}{2} x=180+36$ (Note - incorrect simplification results in an answer of $x=144)$	M1
	$\begin{aligned} & 3 x=360-72 \text { or } 3 x=288 \\ & \text { or } \frac{3}{2} x=180-36 \text { or } \frac{3}{2} x=144 \end{aligned}$			M1			
		96		A1	cao		

Please note that there is an alternative method on the next page.

20. (b)	OR			
	$\frac{x}{2}$ oe seen (possibly marked on diagram as size of $\angle A C B)$		5	B1
	$x+36+\frac{x}{2}=180$			M1
		96		A1 cao

21. (a)	tan drawn at (3, 6.5)		3		tan or tan produced passes between points (2, $0 \leq y \leq 4$) and $(4,9 \leq y \leq 12)$
	vertical difference horizontal difference				finds their $\frac{\text { vertical difference }}{\text { horizontal difference }}$ for two points on tan or finds their $\frac{\text { vertical difference }}{\text { horizontal difference }}$ for two points on curve, horizontal difference where one of the points has an x-coordinate between 2.5 and 3 inc and the other point has an x-coordinate between 3 and 3.5 inc
		$\begin{array}{r} 2.5-6.5 \\ \text { inc } \end{array}$		A1	dep on both M marks
(b)		-1.7	1	B1	Accept answer in range -1.7--1.65
(c)(i)	line joining $(-1,11) \&(1,13)$		4	M1	
		12		A1	cao
(ii)	produces line to cut curve again			M1	
		4		A1	ft from line
					Total 8 marks

first part - finds area of $\triangle B C D$ and/or length of $B D$

22.	Area of $\triangle B C D=2$	6	B	for area of triangle BCD
	$\begin{aligned} & \left(B D^{2}=\right) 2^{2}+2^{2} \text { or }\left(\frac{B D}{2}\right)^{2}+\left(\frac{B D}{2}\right)^{2}=2^{2} \\ & \text { or } \frac{B D / 2}{2}=\cos 45^{\circ} \text { or } \sin 45^{\circ} \\ & \text { or } \frac{B D}{2}=2 \cos 45^{\circ} \text { or } 2 \sin 45^{\circ} \end{aligned}$		M	for correct start to Pythagoras or trig for finding $B D$ or $\left(\frac{B D}{2}\right)$
	$(B D=) \sqrt{8}$ or $2 \sqrt{2}$ or 2.83 or better (2.8284...) or $\left(\frac{B D}{2}\right)=\sqrt{2}$ or $\frac{\sqrt{8}}{2}$ or 1.41 or better (1.4142...)			for lengths $B D$ or $\left(\frac{B D}{2}\right)$ correct

second part method 1 - uses Pythagoras to find $A M$, where M is midpoint of $B D$

	$A M^{2}=10^{2}-\left(\frac{B D}{2}\right)^{2}$		$M 1$
	$A M=\sqrt{98}$ or $7 \sqrt{2}$ or 9.90 or better $(9.8994 \ldots)$		
		16	
	A1 for $\sqrt{98}$ or $7 \sqrt{2} 9.90$ or better		

second part method 2 - finds angle A either using Cosine Rule or by first finding $\frac{A}{2}$ using trig

	$\cos A=\frac{10^{2}+10^{2}-B D^{2}}{2 \times 10 \times 10}$ or $\frac{192}{200}$ or 0.96		
	or $\sin \frac{A}{2}=\frac{B D / 2}{10}$ or $\frac{\sqrt{8}}{20}$ or 0.141 or better		
$(0.14142 \ldots)$			

second part method 3 - finds angle $A B D$ (or angle $A D B$) using trig or Cosine Rule

	$(\cos \angle A B D=) \frac{B D / 2}{10}$ or $(\cos \angle A B D=) \frac{10^{2}+B D^{2}-10^{2}}{2 \times 10 \times B D}$		M
	or $\cos \angle A B D=\frac{\sqrt{8}}{20}$ or 0.141 or better $(0.14142 \ldots)$		
	$(\angle A B D=) 81.9^{\circ}$ or better $(81.8698 \ldots)$		
		16	
	A1 for 16 or answer rounding to 16.0		

