Paper 1F

1. (a) nucleus 1
(b) proton 1
(c) electron 1
(d) 2 1
(e) helium 1

Total 5 marks
2. (a) X 1
(b) $20 / 21 \quad 1$
(c) glowing splint 1
relights 1
(d) carbon dioxide 1

Total 5 marks
3. (a) zinc + sulphuric acid \rightarrow zinc sulphate + hydrogen 1
(b) effervescence 1
slower 1
exothermic 1
(c) burning splint / flame 1 squeaky pop / explosion 1
(d) (i) filtration 1
(ii) barium chloride (solution) 1
white precipitate 1
Total 9 marks
4. (a) (i) coke 1
limestone 1
(ii) slag / calcium silicate 1
(iii) $\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}$ (g) $\rightarrow \mathrm{CO}_{2}$ (g) 1
formulae 1
state symbols 1
(iv) CO_{2} 1
(b) (i) air / oxygen 1
water / moisture 1
(ii) zinc 1 prevents air/oxygen/water from contacting iron 1 OR more reactive than iron
(iii) (covered in) oil
5. (a) bright/brilliant/blinding flame
white solid/ ash/ smoke 1
(b) water / $\mathrm{H}_{2} \mathrm{O}$ 1
(c) 11 solution/magnesium hydroxide is (weak) alkali / contains hydroxide ions
(d) (i) hydrochloric (acid)
(ii) neutralisation1
(iii) water

Total 8 marks

6. (a) hydrogen and carbon only 1
(b) (i) alkanes 1
(ii) $\mathrm{C}_{n} \mathrm{H}_{2 n+2} \quad 1$
(iii) A and $\mathrm{D} / \mathrm{CH}_{4}$ and $\mathrm{C}_{3} \mathrm{H}_{8} \quad 1$
(c) (i) compounds with same molecular formula 1 but different structures/structural formulae 1
(ii) none 1
(d)

all atoms and bonds correct
bond angles around C approximately $120^{\circ} 1$
(e) 28 1
7. (a) nitrogen 1

Air 1
hydrogen 1
natural gas / methane / hydrocarbons 1
(P and Q can be in reverse order)
(b) (i) cooled NOT condensed 1
(ii) liquid 1
(c) (unused/recycled) nitrogen and hydrogen

Total 7 marks
8. (a)

Name of substance	Ionic bonding	Covalent bonding	Insoluble in water	Soluble in water
ammonia		\checkmark		\checkmark
methane		\checkmark		
poly(ethene)			\checkmark	
sodium chloride	\checkmark			\checkmark
sodium hydroxide				

All six correct - 4 marks
5 or 4 correct - 3 marks
3 correct - 2 marks
2 correct - 1 mark
(b) (i) any suitable use e.g. making bags/food packaging... 1
(ii) any two from: soap, paper, ceramics, bleach, detergents 2

Total 7 marks
9. (a) potassium manganate(VII) / manganese(IV) oxide
(b) damp litmus paper 1
bleached 1
(c) (i) iron(III) chloride 1
(ii) brown solid / precipitate 1
(d) (i) iodine 1
(ii) chlorine is more reactive (than iodine) 1

Total 7 marks
10. (a) a shared pair of electrons
(b) simple 1
weak 1
molecules 1
low 1
(c) (i) hydrogen shown with 1 electron 1
oxygen shown as $2,6 \quad 1$
(ii) one oxygen atom with two hydrogens 1
each has full outer shell of electrons 1
(iii) bent / v-shaped 1

Total 10 marks
11. (a) electrons from Mg to $\mathrm{F} \quad 1$

Mg loses 2 electrons1
each of two F gains 1 electron 1
(b) Mg 1
it has lost electrons 1
(c) (i) $\mathrm{Na}^{+} \mathrm{F}^{-}$ 1
(ii) NaF 1
(d) orange / yellow 1
12. (a) (i) 51
(ii) colourless 1
(b) (i) $\mathrm{NH}_{3}+\mathrm{HCl} \rightarrow \mathrm{NH}_{4} \mathrm{Cl}$ OR NH $44 \mathrm{OH}+\mathrm{HCl} \rightarrow \mathrm{NH}_{4} \mathrm{Cl}+\mathrm{H}_{2} \mathrm{O}$ 2
reagents (1) products (1); (-1) for incorrect balancing.
(ii) (heat with) sodium hydroxide solution 1 1
ammonia /alkaline gas given off
ammonia /alkaline gas given off
test gas with damp U I / litmus paper - turns blue 1
(iii) mix together same volumes 1
no indicator/partial evaporation - not to dryness 1
crystallise solution 1
(OR if use indicator:add charcoal
filter
evaporate/crystallise)
(c) (i) any soluble lead(II) salt 1
any soluble chloride 1
(ii) any equation that is cq on answer to $\mathrm{c}(\mathrm{i})$ 1

Paper 2H

1. (a)

Name of substance	lonic bonding	Covalent bonding	Insoluble in water	Soluble in water
ammonia		\checkmark		\checkmark
methane		\checkmark		
poly(ethene)			\checkmark	
sodium chloride	\checkmark			\checkmark
sodium hydroxide				

All six correct - 4 marks
5 or 4 correct - 3 marks
3 correct - 2 marks
2 correct - 1 mark
(b) (i) any suitable use e.g. making bags/food packaging... 1
(ii) any two from: soap, paper, ceramics, bleach, detergents 2

Total 7 marks

2. (a) potassium manganate(VII) / manganese(IV) oxide
(b) damp litmus paper 1
bleached 1
(c) (i) iron(III) chloride 1
(ii) brown solid / precipitate 1
(d) (i) iodine 1
(ii) chlorine is more reactive (than iodine) 1

Total 7 marks
3. (a) a shared pair of electrons 1
(b) simple 1
weak 1
molecules 1
low 1
(c) (i) hydrogen shown with 1 electron 1
oxygen shown as $2,6 \quad 1$
(ii) one oxygen atom with two hydrogens 1
each has full outer shell of electrons 1
(iii) bent / v-shaped 1

Total 10 marks
4. (a) electrons from Mg to F

Mg loses 2 electrons

1each of two F gains 1 electron 1
(b) Mg 1
it has lost electrons 1
(c) (i) $\mathrm{Na}^{+} \mathrm{F}$: 1
(ii) NaF 1
(d) orange / yellow 1
5. (a) (i) 51
(ii) colourless 1
(b) (i) $\mathrm{NH}_{3}+\mathrm{HCl} \rightarrow \mathrm{NH}_{4} \mathrm{Cl}$ OR NH $44 \mathrm{OH}+\mathrm{HCl} \rightarrow \mathrm{NH}_{4} \mathrm{Cl}+\mathrm{H}_{2} \mathrm{O}$ 2reagents (1) products (1); (-1) for incorrect balancing.
(ii) (heat with) sodium hydroxide solution 1
ammonia /alkaline gas given off 1
test gas with damp U I / litmus paper - turns blue 1
(iii) mix together same volumes 1
no indicator/partial evaporation - not to dryness 1
crystallise solution 1
(OR if use indicator: add charcoal
filter
evaporate/crystallise)
(c) (i) any soluble lead(II) salt 1
any soluble chloride 1
(ii) any equation that is cq on answer to $\mathrm{c}(\mathrm{i})$ 1
Total 13 marks6.

7. (a) Giant structure of (positive/metal/copper) ions

electrons1
delocalised / free / mobile 1
(b) (i) green 1
black 1
(ii) $\mathrm{CuCO}_{3} \rightarrow \mathrm{CuO}+\mathrm{CO}_{2}$ 1
(iii) (bubble through) limewater 1
turns milky/cloudy / white precipitate 1
(iv) (dilute) nitric acid 1
neutralisation 1
(v) (pale) blue precipitate 1
(vi) (dark) blue 1
(vii) $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ 1
(c) copper(I) oxide 1
$\mathrm{Cu}_{2} \mathrm{O}$ 1
Total 15 marks
8. (a) (manufacture of) polymers / poly(ethene) / ethanol1
(manufacture of) ammonia / margarine / rocket fuel 1
(b)

(c) (i)

2
(ii) bonds broken $=348+(2 \times 412) / 1172$
bonds formed $=612+436 / 1048$ 1
energy change $=124(\mathrm{~kJ} / \mathrm{mol})$ 1
(d) increase in temperature 2
add catalyst
increase pressure
(e) (i) $\quad(\rightleftharpoons)$ reversible reaction 1 1
(ΔH) enthalpy change / energy change / heat change
(ΔH) enthalpy change / energy change / heat change
(ii) increased 1 1decreased
9. (a) fractional distillation 1
(b) $\left.\begin{array}{l}\text { gasoline } \\ \text { kerosene } \\ \text { diesel } \\ \text { fuel oil } \\ \text { bitumen }\end{array}\right\}$ any two for 1 each $\quad 2$
(c) heat / high temperature / 200-400 ${ }^{\circ} \mathrm{C} \quad 1$
phosphoric acid 1
(d) (i) sugar (cane) 1
(ii) no crude oil 1
plenty of land/suitable climate to grow sugar cane 1
(e) (i) ethanol 1 sulphuric/phosphoric/hydrochloric acid 1
(ii) esters 1

Total 11 marks
$\begin{array}{ll}\left.\text { 10. (a) } \begin{array}{l}\text { effervescence /fizzing / bubbles } \\ \text { water goes cloudy / white precipitate } \\ \text { gets warmer } \\ \mathrm{Ca}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2}\end{array}\right\} \text { any two for } 1 \text { each } & \mathbf{2} \\ & 1\end{array}$
(b) zinc oxide 1
$\mathrm{Zn}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{ZnO}+\mathrm{H}_{2} \quad 1$
(c) (i) $\mathrm{Zn}+\mathrm{Fe}^{2+} \rightarrow \mathrm{Zn}^{2+}+\mathrm{Fe} \quad$ Ignore state symbols 1
(ii) displacement / redox 1
(d) oxygen / air 1
(e) (i) (coated with) zinc 1
(ii) zinc more reactive than iron 1 zinc reacts/corrodes instead of iron 1

Total 11 marks
11. (a) 160 1
(b) (i) $320000 \div 160 \quad 1$
$=2000 \quad 1$
(ii) 2000×2 1
$=4000 \quad 1$
(iii) 4000×56 1
$=224000 \mathrm{~g}=224(\mathrm{~kg}) \quad 1$
(c) (i) it reduces the capacity of blood to carry oxygen / correct 1 reference to haemoglobin
(ii) $5000 \times 24=120000\left(\mathrm{dm}^{3}\right) \quad 1$
(d) $\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}$ 2

All formulae correct $=1$, correct balancing $=1$
(e) (i) silica / silicon dioxide / sand
(ii) $\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}$

$$
\mathrm{CaO}+\mathrm{SiO}_{2} \rightarrow \mathrm{CaSiO}_{3}
$$

Paper 3

1. (a)

	Name of apparatus	Volume of liquid
A	measuring cylinder	8.6
B	beaker	100
C	pipette	25
D	burette	12.3

(b) (i) B 1
(ii) D (burette)
2. (a) 800 600
400
200
0
all $5=2$ marks
any $3=1$ mark
(b) suitable y scale
all points correct (-1 per error) 2
best fit line attempted 1
(c) graph turns
get better idea where maximum is 2
(d) repeat 1
check consistency of data 1
(e) (i) no oxygen / hydrogen can not react / nothing to react with 1
(ii) reference to $2: 1$ ratio in equation 2
maximum amount of hydrogen reacting
(iii) 333 (accept 330 or 300$)\left(\mathrm{cm}^{3}\right)$
3. (a) when acid added 1
(b) (i) circled anomalous point (at $5^{\circ} \mathrm{C}$) 1
(ii) got warmer 3
absorbed heat/energy from surroundings
reaction faster
OR
too great a volume of solution(s)
bigger depth to look through
harder to see cross / less precipitate needed to obscure cross.
(iii) 7 seconds (from graph)
$\begin{array}{ll}\text { (c) } 1 / \mathrm{b}(\text { iii }) \text { cq marking } \\ \text { correct answer }\left(0.143 \mathrm{~s}^{-1}\right) & \mathbf{2}\end{array}$
(d) faster so percentage error in times greater loss of heat to surroundings
(e) (i) the higher the temp the faster the reaction 2 idea of non linear
(ii) particles move faster 3
more collisions per second / more frequent collisions more collisions are successful / have energy $>\mathrm{E}_{\mathrm{A}}$
(f) volume thiosulphate constant different volumes acid
different volumes water (to keep total volume / depth constant) temp constant
4. (a) 10.6 (g)
(b) decreases

(c) fume cupboard / well ventilated room
sulphur dioxide is toxic.
(d) evaporation (of water) 1
evaporation faster 1
(e) measure pH 1

