edexcel

Mark Scheme (Results)

November 2012

GCSE Mathematics Linked Pair Pilot Application of Mathematics (2AM01) Higher (Calculator) Paper 1H

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk for our BTEC qualifications.
Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson.
Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

November 2012
Publications Code UG033650
All the material in this publication is copyright
© Pearson Education Ltd 2012

NOTES ON MARKI NG PRI NCI PLES

1 All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

2 Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

3 All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

4 Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

5 Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
6 Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear Comprehension and meaning is clear by using correct notation and labeling conventions.
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter

Reasoning, explanation or argument is correct and appropriately structured to convey mathematical reasoning.
iii) organise information clearly and coherently, using specialist vocabulary when appropriate.

The mathematical methods and processes used are coherently and clearly organised and the appropriate mathematical vocabulary used.

With working
If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks. Send the response to review, and discuss each of these situations with your Team Leader.
If there is no answer on the answer line then check the working for an obvious answer.
Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks. Discuss each of these situations with your Team Leader.
If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

Follow through marks

Follow through marks which involve a single stage calculation can be awarded without working since you can check the answer yourself, but if ambiguous do not award.
Follow through marks which involve more than one stage of calculation can only be awarded on sight of the relevant working, even if it appears obvious that there is only one way you could get the answer given.

I gnoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: e.g. incorrect canceling of a fraction that would otherwise be correct
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect e.g. algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

Probability

Probability answers must be given a fractions, percentages or decimals. If a candidate gives a decimal equivalent to a probability, this should be written to at least 2 decimal places (unless tenths).
Incorrect notation should lose the accuracy marks, but be awarded any implied method marks.
If a probability answer is given on the answer line using both incorrect and correct notation, award the marks.
If a probability fraction is given then cancelled incorrectly, ignore the incorrectly cancelled answer.

Linear equations
Full marks can be gained if the solution alone is given on the answer line, or otherwise unambiguously indicated in working (without contradiction elsewhere). Where the correct solution only is shown substituted, but not identified as the solution, the accuracy mark is lost but any method marks can be awarded.

Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

Range of answers

Unless otherwise stated, when an answer is given as a range (e.g 3.5-4.2) then this is inclusive of the end points (e.g 3.5, 4.2) and includes all numbers within the range (e.g 4, 4.1)

Guidance on the use of codes within this mark scheme

```
M1 - method mark
A1 - accuracy mark
B1 - Working mark
C1 - communication mark
QWC - quality of written communication
oe - or equivalent
cao - correct answer only
ft - follow through
sc - special case
dep - dependent (on a previous mark or conclusion)
indep - independent
isw - ignore subsequent working
```

5AM1H_01					
Question		Working	Answer	Mark	Notes
1	(a)	375×9.02	3382.50	2	M1 for 375×9.02 A1 for $3382.5(0)$ (SC B1 for answer of 3382 or 3383 if M0 scored)
	(b)	$\begin{aligned} & 675 \div 9.02=74.83 \\ & \mathfrak{£ 7 5}-74.83 \\ & \\ & \text { OR } \\ & 75 \times 9.02=676.50 \\ & 676.50-675=1.50 \\ & 1.50 \div 9.02=0.166 \ldots \end{aligned}$	$\begin{gathered} £ 0.17 \text { or } 17 \mathrm{p} \text { or } \\ 1.50 \mathrm{Kr} \end{gathered}$	3	M1 for $675 \div 9.02(=74.83 \ldots$...) M1 (dep) for 75 - ' 74.83 ' A1 for $£ 0.17$ or 17 p OR M1 for $75 \times 9.02(=676.5)$ M1 (dep) for ' 676.5 ' - 675 A1 for $1.5(0) \mathrm{Kr}$ OR M1 for $75 \times 9.02(=676.5)$ M1 (dep) for ' 676.5 ' $-675=1.5$ and ' 1.5 ' $\div 9.02$ A1 for $£ 0.17$ or 17 p
2		Split shape into two rectangles $14 \times 10-5 \times 6$ or $14 \times 5+5 \times 8$ Area $=110 \mathrm{~m}^{2}$ $110 \times 4=440$ minutes $440 \div 60=7$ hours 20 minutes $07: 00+30 \mathrm{mins}+7 \mathrm{~h} 20 \mathrm{~min}$	1450	6	M1 for attempt to find area of shape, eg $14 \times 10-5 \times 6$ or $14 \times 5+5 \times 8$ or $8 \times 10+6 \times 5$ or $8 \times 10+6 \times 5$ or 110 seen M1 (dep) for ' 110 ' $\times 4 \quad(=440)$ or $60 \div 4(=15)$ M1 for attempt to find number of hours needed, eg ' 440 ' $\div 60$ oe eg ' 110 ' $\div(60 \div 4)$ or $7 \times 60(=420)$ or 7 (hrs) seen A1 for 7 (hrs) 20 (mins) or $7 \frac{1}{3}$ (hrs) or 7.33 (hrs) M1 for $7+30$ (mins) + ' 7 (hrs) 20 (mins)' (condone 7 (hrs) 33 (mins)) may be implied by answer A1 for 1450 or 250 pm or eg 'ten to 3 pm '

5AM1H_01					
Question		Working	Answer	Mark	Notes
3		$\begin{aligned} & 1 / 2(x+x+1.8) \times 1.2=4.8 \\ & 2 x+1.8=4.8 \div 0.6 \\ & 2 x+1.8=8 \\ & 2 x=6.2 \end{aligned}$	3.1	5	M1 for attempt to use trapezium formula, eg $1 / 2 \times(a+b) \times 1.2=4.8$ or $1 / 2 \times(a+1.8) \times 1.2=4.8$ may be implied by sight of 8 M1 for correct attempt to remove brackets, eg $(a+b=) 4.8 \div 1.2 \times 2$ or 8 seen M1 for $(a+b=) x+x+1.8\left(={ }^{\prime} 8\right.$ ') oe M1 for correct attempt to isolate x on one side of equation, eg $x+x=$ ' 8 ' - 1.8 A1 for 3.1 OR M1 for attempt to use trapezium formula, eg $1 / 2 \times(a+b) \times 1.2=4.8$ or $1 / 2 \times(a+1.8) \times 1.2=4.8$ may be implied by sight of 8 M1 for correct attempt to remove brackets, eg $(a+b=) 4.8 \div 1.2 \times 2$ or 8 seen M2 (dep on first M1)for finding a and b such that $a+b=$ ' 8 ' and $a-b$ $=1.8$ (M1 for attempt to eliminate a or b, eg $2 a={ }^{\prime} 8$ ' +1.8 oe) A1 for 3.1 OR M1 for $(a+b=) x+x+1.8$ oe M1 for $1 / 2(x+x+1.8) \times 1.2=4.8$ oe M1 for correct attempt to remove brackets, eg $2 x+1.8=4.8 \div 0.6$ or $1.2 x+1.08=4.8$ condone one arithmetic error M1 for attempt to isolate x on one side of equation, eg $2 x=8-1.8$ or $1.2 x=4.8-1.08$ A1 for 3.1 OR M1 for $1 / 2 \times 1.8 \times 1.2(=1.08)$ M1 for $1.2 \times x+$ ' 1.08 ' oe M1 for $1.2 \times x+$ ' 1.08 ' $=4.8$ oe M1 for correct attempt to isolate x on one side of equation, eg $2 x=4.8$ - '1.08’ A1 for 3.1

Question		Working	Answer	Mark	Notes
4	(a)		35	1	B1 cao
	(b)(i)	$30 \div 150$	0.2	3	M1 for right angled triangle drawn or diff $y \div \operatorname{diff} x$
					A1 for $0.2 \mathrm{oe}, \mathrm{eg} \frac{30}{150}$
	(ii)		20p		B1 for 20 p or $£ 0.20$ or ft their (b)(i)
	(c)	75 units	Gas\&Air with	4	M1 for attempt to calculate 75 units and 100 units for at least one
		Gas\&Air $=£ 35$	comparisons		company
		Seagas $=£ 35$			A1 for (Seagas =) 35 and 40 OR (Sandygas $=$) $37.5(0)$ and 50 OR
		Sandygas $=£ 37.50$			(Gas\&Air =) 35 and 37.5(0) oe A1 for (Seagas =) 35 and 40 AND (Sandygas =) 37.5(0) and 50 AND
		100 units			(Gas\&Air $=$) 35 and 37.5(0) oe
		$\begin{aligned} & \overline{\text { Gas\&Air }}=£ 37.50 \\ & \text { Seagas }=£ 40 \end{aligned}$			C1 (dep on M1) for Gas\&Air or ft their calculations
		$\text { Sandygas }=£ 50$			OR
		OR			M1 for attempt to calculate 75 units or 100 units for at least two companies
		$\begin{aligned} \text { Gas\&Air }(75) & =£ 35 \\ (100) & =£ 37.50 \end{aligned}$			A1 for two of (75 units) $35,35,37.5(0)$ or for two of (100 units) 37.5(0), 40, 50
		$\begin{aligned} \text { Seagas }(75) & =£ 35 \\ (100) & =£ 40 \end{aligned}$			A1 for all of (Seagas $=$) 35 and 40, (Sandygas $=$) 37.5(0) and 50, (Gas\&Air $=$) 35 and 37.5(0) oe C1 (dep on M1) for Gas\&Air or ft their calculations
		Sandygas (75) $=£ 37.50$			OR
		$(100)=£ 50$			M1 for straight line drawn through $(0,0)$ or $(75,37.5)$ or for line with gradient 0.5 OR for straight line drawn through $(75,35)$ or $(100,37.5)$ or for line with gradient 0.1
					A1 for straight line through ($75,37.5$) and (100,50)
					A1 for straight line through $(75,35)$ and $(100,37.5)$ C1 (dep on M1) for Gas\&Air or ft 'straight lines' for Sandygas and
					Gas\&Air [NB tolerance $\pm 2 \mathrm{~mm}$ square]

5AM1H_01					
Question		Working	Answer	Mark	Notes
5	(a)		$\begin{aligned} & =2^{*} \mathrm{~A} 2+2^{*} \mathrm{~B} 2 \\ & =\mathrm{C} 2 / 2 \end{aligned}$	4	B1 for doubling the length and the width either singly or together eg $2^{*}(x+y)$ or $2^{*} x$ and $2^{*} y$ or $2^{*}(\mathrm{~A} 2+\mathrm{B} 2)$ or $2^{*} \mathrm{~A} 2$ and $2^{*} \mathrm{~B} 2$ or 2*SUM(A2:B2) B 1 for adding the lengths either before or after doubling, eg A2+B2 B1 for attempt to dividing their spreadsheet formula by 2 or their cell C by 2, eg C2/2 B1 (dep on two formulas) for correct spreadsheet formula notation (condone missing $=$)
	(b)		8	1	B1 for 8 or ft their formulas
6			$(28,25)$ and $(23$, 26) plotted	1	B1 for both points plotted correctly tolerance $\pm 2 \mathrm{~mm}$ square
	(b)		Positive	1	B1 for positive
	(c)		28-34	2	$\begin{aligned} & \text { B2 for } 28-34 \\ & \text { (B1 for } 26-36 \text {) } \end{aligned}$
*7		8 cans of cola 12 burgers 10 buns LCM is 120 Cola $5 \times 2 \times £ 3.95=£ 39.50$ Burgers $10 \times £ 4.95=£ 49.50$ Buns $12 \times £ 1.95=£ 23.40$	$£ 112.40$	6	M1 for attempt to find LCM of 8, 12 and 10 , eg by listing multiples or 120 seen M1 for $($ cola $=) 120 \div 8(=15)$ packs or $($ burgers $=) 120 \div 12(=10)$ packs or (buns $=$) $120 \div 10(=12)$ packs M1 for (packs of cola $=\frac{2}{3} \times 15^{\prime}(=10)$ M2 for (total cost $=$) $\frac{2}{3} \times{ }^{\prime} 15^{\prime} \times 3.95+10 \times 4.95+12 \times 1.95$ (M1 for total cost for their packs of cola, burgers and buns) C1 (dep on first M1) for $£ 112.4(0)$ or ft their costs with work for cola, burgers and buns clearly identified

5AM1H_01					
Question		Working	Answer	Mark	Notes
*9		$\begin{aligned} & x+x+4+3(x+4)=51 \\ & 2 x+4+3 x+12=51 \\ & 5 x+16=51 \\ & 5 x=35 \\ & 5 x=35 \div 5 \end{aligned}$		5	M1 for $x+4$ or $3(x+4)$ oe seen M1 for $x+$ ' $x+4$ ' + ' $3(x+4)^{\prime}$ M1 $x+{ }^{\prime} x+4$ ' $+{ }^{\prime} 3(x+4)^{\prime}=51$ A1 for 7 or 11 or 33 C1 for Ann 7, Beth 11, and Cath 33 oe OR M1 for using a value for n, eg $n+4$ or $4 \times n$ M1 for attempting a trial using $n, n+4$ and $3(n+4)$ M1 for at least 2 trials with correct totals for ' n ' A1 for 11 or 33 C1 for Ann 7, Beth 11, and Cath 33 oe
10		$\begin{aligned} & 7200 \div 0.75 \\ & 75 \%=7200 \\ & 1 \%=7200 \div 75=96 \\ & 100 \%=96 \times 100 \end{aligned}$	9600	3	M2 for $7200 \div(1-0.25)$ A1 for 9600 OR M1 for $7200 \div 75$ or 96 seen M1 for ' 96 ' $\times 100$ A1 for 9600
11	(a) (b)	$\begin{aligned} & 15+24+12+36=87 \\ & 87 \div 4 \end{aligned}$	21.75 upward trend in sales	2 1	M1 for $(15+24+12+36) \div 4$ A1 for 21.75 B1 for upward trend (in sales) oe or more sets are sold over time or number of sets sold going up oe

5AM1H_01					
Question		Working	Answer	Mark	Notes
12	(a)		graph	2	B2 for fully correct cf graph (accept ogive) condone graph starting at (30, 0) [B1 for 4 or 5 points plotted consistently or for cf graph drawn through points other than end points of intervals]
	(b)(i)		$53-57$	3	B1 for 53-57 or ft their cf graph (tolerance $\pm 2 \mathrm{~mm}$ square)
	(ii)	63-43	20		M1 for 'upper quartile (from $\mathrm{cf}=60$)' - 'lower quartile (from $\mathrm{cf}=20$)' (tolerance $\pm 2 \mathrm{~mm}$ square) A1 for $17-23$ or ft their cf graph
	(c)	80-60	19-23	2	M1 for 80 - ' 60 (from $A=63$)' for their cf graph (tolerance $\pm 2 \mathrm{~mm}$ square) or 80 -
					$\left(52+[80-52] \times \frac{\mathrm{J}}{10}\right) \text { oe }$
		$\begin{aligned} & 80-\left(52+[80-52] \times \frac{3}{10}\right) \\ & 80-60.4=19.6 \end{aligned}$			A1 for 19-23 [SC B1 for $90-$ ' 60 (from $A=63$)' (tolerance $\pm 2 \mathrm{~mm}$ square)]
13		$\text { eg } \quad \begin{aligned} 4 a+3 b & =250 \\ 3 a+4 b & =240 \end{aligned}$	$\begin{aligned} & \text { (i) } 40 \\ & \text { (ii) } 30 \end{aligned}$	5	B1 for correct equations expressed in terms of two variables (oe) M1 for correct process to eliminate either variable (condone one arithmetic error) A1 for either (£)0.4 or (£) 0.3 oe M1 (dep on first M1) for correct substitution of their found variable OR M1 (dep on first M1) for correct process to eliminate the other variable (condone one arithmetic error) A1 cao for both (i) 40 and (ii) 30 SC (if M0 scored) B1 for (i) 40 or (ii) 30
		(×3) $12 a+9 b=750$			
		$(\times 4) \quad 12 a+16 b=960$			
		Subtract			
		$7 b=210$ so $b=30$			
		Substitute			
		$\begin{aligned} & 4 a+90=250 \\ & 4 a=250-90=160 \end{aligned}$			
		$4 a=250-90=160$			
		OR			
		Eliminates b first or substitutes back into any equation			

M11					
Question		Working	Answer	Mark	Notes
14			9.3×10^{7}	1	B1 cao
	(b)		249000	1	B1 cao
	(c)		100000000	1	B1 for 100000000 or accept 1×10^{8} or 10^{8} or 100 million oe
*15			Comparison of data	3	C1 for relevant comparison of spread, eg range or IQR C1 for relevant comparison of median (accept average in place of word median) C 1 for a different relevant comparison, eg highest values
16	(a)	Angle $C B H=180-125=55^{\circ}$ Angle $C H B=41^{\circ}$ Angle $B C H=180-(55+41)=84^{\circ}$ Angle $R E D=180-84$	96	3	```B1 for \((C B H=) 55\) seen or \((C H B=) 41\) M1 for \((B C H=) 180-\left({ }^{\prime} 55 '+41\right)(=84)\) A1 for 96 OR B1 for \((C H B=) 41\) seen M1 for \((B C H=)\) 125-41 \((=84)\) A1 for 96```
	(b)(i)	$C H=1 / 2 \times 24$	12	4	M1 for $1 / 2 \times 24$ oe, eg $\frac{10}{20}=\frac{C H}{24}$ A1 for 12
	(ii)	$E F=24 \times 1.5$	36		M1 for 24×1.5 oe, eg $\frac{20}{30}=\frac{24}{E F}$ or $\mathrm{ft}{ }^{\prime} 12$ ' $\times 3$ A1 for 36

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{5AM1H_01}

\hline \multicolumn{2}{|l|}{Question} \& Working \& Answer \& Mark \& Notes

\hline 17 \& (a)

(b) \& $$
\frac{4}{23} \times 100
$$ \& e.g. bars at height $1 \mathrm{~cm}, 2 \mathrm{~cm}, 8 \mathrm{~cm}$, $6 \mathrm{~cm}, 6 \mathrm{~cm}, 1 \mathrm{~cm}$ plus frequency density scale

$$
17.3-17.4
$$ \& 3

3 \& | M1 for frequency/class width or eg $0.02,0.04,0.16,0.12,0.12,0.02$ (minimum 4 seen) |
| :--- |
| A1 for bars with consistent areas for all frequencies |
| B1 for appropriate frequency density scale or correct key |
| [NB apply same mark-scheme for different frequency density scale] |
| B1 for (number of fish =) 4 |
| M1 for $\frac{\prime 4 \prime}{23} \times 100$ |
| A1 for 17.3 - 17.4 |
| OR |
| B1 for $($ area $=) 8$ |
| M1 for $\frac{8 \prime}{46} \times 100$ |
| A1 for 17.3-17.4 |

\hline
\end{tabular}

5AM1H_01					
Question		Working	Answer	Mark	Notes
18	(a)(i)		connects lorries and number of drivers	2	B1 for connecting lorries and number of drivers, eg there are only 8 drivers
	(ii)		connects total waste with number of trips and lorry capacity		B1 for connecting total waste with number of trips and lorry capacity, eg 8 trips each with 10 tonnes plus 6 trips each with 15 tonnes must be 'greater than or equal to' how much needs to be moved (540 tonnes)
	(b)		$\begin{aligned} & t \leq 6 \\ & f \leq 4 \end{aligned}$	1	B1 for $t \leq 6$ and $f \leq 4$ (accept $y \leq 6$ and $x \leq 4)$
	(c)		plotting graphs	2	B2 for identifying the region $\mathrm{ft} t \leq{ }^{\prime} 6$ ' and $f \leq{ }^{\prime} 4$ ' (B1 for at least 3 correct graphs (ignore shading) ft $t \leq{ }^{\prime} 6$ ' and $f \leq{ }^{\prime} 4$ ')
	(d)	Profit $=200 t+150 f$	6 Type A 2 Type B	2	M1 for calculating a profit, eg $200 \times 6+150 \times 2(=1500)$ A1 for 6 Type A and 2 Type B or $t=6$ and $f=2$ OR M1 for identifying an objective function, eg $200 t+150 f=600$ A1 for 6 Type A and 2 Type B or $t=6$ and $f=2$ or $y=6$ and $x=2$

Diagram for Q18

Number of
type A
lorries

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{5AM1H_01}

\hline \multicolumn{2}{|c|}{Question} \& Working \& Answer \& Mark \& Notes

\hline 19 \& (a)

(b) \& \begin{tabular}{l}
$$
\begin{aligned}
& 512: 1000 \\
& 8^{3}: 10^{3} \\
& 12 \div 8 \times 10
\end{aligned}
$$

OR
$$
\begin{aligned}
& \left(\frac{h}{12}\right)^{3}=\frac{1000}{512} \\
& h^{3}=\frac{1000 \times 12^{3}}{512}
\end{aligned}
$$
$$
\begin{aligned}
& 12: 13.5=8: 9 \\
& 8^{3}: 9^{3}=512: 729
\end{aligned}
$$

OR
$$
\begin{aligned}
& \frac{v}{512}=\left(\frac{13.5}{12}\right)^{3} \\
& v=512 \times\left(\frac{13.5}{12}\right)^{3}
\end{aligned}
$$

 \&

15

729
\end{tabular} \& 3

3 \& | M1 for $\sqrt[3]{512(=8)}$ and $\sqrt[3]{1000(=10)}$ or $512: 1000=8^{3}: 10^{3}$ oe or ($\mathrm{sf}=$) 0.8 or 1.25 seen |
| :--- |
| M1 (dep) for $12 \div$ ' 8 ' \times ' 10 ' oe or $12: 15$ or $12 \times{ }^{\prime} 1.25$ ' or $12 \div$ '0.8' |
| A1 for 15 |
| OR |
| M1 for $\left(\frac{h}{12}\right)^{3}=\frac{1000}{512}$ oe or $\sqrt[3]{\frac{1000}{512}}$ or $\sqrt[3]{\frac{512}{1000}}$ |
| M1 (dep) for $\left(h^{3}=\right) \frac{1000 \times 12^{3}}{512}$ oe $(=3375)$ |
| A1 for 15 |
| M1 for 12^{3} and 13.5^{3} or $12: 13.5=8: 9$ oe M1 (dep) for $8^{3}: 9^{3}$ or $512: 729$ |
| A1 for 729 |
| OR |
| M1 for $\left(\frac{13.5}{12}\right)^{3}$ or $\left(\frac{12}{13.5}\right)^{3}$ oe |
| M1 (dep) for $512 \times\left(\frac{13.5}{12}\right)^{3}$ or $512 \div\left(\frac{12}{13.5}\right)^{3}$ oe A1 for 729 |

\hline
\end{tabular}

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UG033650 November 2012

For more information on Edexcel qualifications, please visit our website www.edexcel.com

Rewarding Learning

