Pearson Edexcel Level 1/Level 2 GCSE (9–1)

May–June 2024 Assessment Window

Syllabus 1PH0 1SC0

GCSE Physics and GCSE Combined Science (Physics) Equations List

You are not permitted to take this notice into the examination. A version of this equation list will be included with the May-June 2024 question papers. This document is valid if downloaded from the <u>Pearson</u> <u>Qualifications website</u>.

Continue 🕨

If you're taking **GCSE (9–1) Combined Science** or **GCSE (9–1) Physics**, you will need these equations:

HT = higher tier

	distance travelled = average speed × time	
	acceleration = change in velocity ÷ time taken	$a = \frac{(v-u)}{t}$
	force = mass \times acceleration	$F = m \times a$
	weight = mass × gravitational field strength	$W = m \times g$
нт	momentum = mass × velocity	$p = m \times v$
	change in gravitational potential energy = mass \times gravitational field strength \times change in vertical height	$\Delta GPE = m \times g \times \Delta h$
	kinetic energy = $1/2 \times mass \times (speed)^2$	$KE = \frac{1}{2} \times m \times v^2$
	efficiency = $\frac{(useful energy transferred by the device)}{(total energy supplied to the device)}$	
	wave speed = frequency \times wavelength	$v = f \times \lambda$
	wave speed = distance ÷ time	$v = \frac{x}{t}$
	work done = force \times distance moved in the direction of the force	$E = F \times d$
	power = work done ÷ time taken	$P = \frac{E}{t}$
	energy transferred = charge moved \times potential difference	$E = Q \times V$
	charge = current \times time	$Q = I \times t$
	potential difference = current × resistance	$V = I \times R$
	power = energy transferred ÷ time taken	$P = \frac{E}{t}$
	electrical power = current × potential difference	$P = I \times V$
	electrical power = $(current)^2 \times resistance$	$P = I^2 \times R$
	density = mass ÷ volume	$\rho = \frac{m}{V}$

	force exerted on a spring = spring constant \times extension	$F = k \times x$
	$(final velocity)^2 - (initial velocity)^2 = 2 \times acceleration \times distance$	$v^2 - u^2 = 2 \times a \times x$
нт	force = change in momentum ÷ time	$F = \frac{(mv - mu)}{t}$
	energy transferred = current \times potential difference \times time	$E = I \times V \times t$
HT	force on a conductor at right angles to a magnetic field carrying a current = magnetic flux density × current × length	$F = B \times I \times l$
	For transformers with 100% efficiency, potential difference across primary coil × current in primary coil = potential difference across secondary coil × current in secondary coil	$V_{\rm P} \times I_{\rm P} = V_{\rm S} \times I_{\rm S}$
	change in thermal energy = mass \times specific heat capacity \times change in temperature	$\Delta Q = m \times c \times \Delta \theta$
	thermal energy for a change of state = mass \times specific latent heat	$Q = m \times L$
	energy transferred in stretching = $0.5 \times \text{spring constant} \times (\text{extension})^2$	$E = \frac{1}{2} \times k \times x^2$

If you're taking **GCSE (9–1) Physics**, you also need these extra equations:

	moment of a force = force \times distance normal to the direction of the force	
	pressure = force normal to surface ÷ area of surface	$P = \frac{F}{A}$
нт	potential difference across primary coil potential difference across secondary coil number of turns in secondary coil	$\frac{V_{\rm p}}{V_{\rm S}} = \frac{N_{\rm p}}{N_{\rm S}}$
	to calculate pressure or volume for gases of fixed mass at constant temperature	$P_1 \times V_1 = P_2 \times V_2$
нт	pressure due to a column of liquid = height of column \times density of liquid \times gravitational field strength	$P = h \times \rho \times g$

END OF EQUATION LIST