

Pearson Edexcel Level 3 Advanced Subsidiary GCE in Physics (8PH0)

List of data, formulae and relationships

Issue 2 November 2022

1/1/1/1/

List of data, formulae and relationships

Acceleration of free fall	$g = 9.81 \text{ m s}^{-2}$	(close to Earth's surface)
Electron charge	$e = -1.60 \times 10^{-19} \mathrm{C}$	
Electron mass	$m_{\rm e} = 9.11 \times 10^{-31} \rm kg$	
Electronvolt	$1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$	
Gravitational field strength	$g = 9.81 \text{ N kg}^{-1}$	(close to Earth's surface)
Planck constant	$h = 6.63 \times 10^{-34} \mathrm{J s}$	
Speed of light in a vacuum	$c = 3.00 \times 10^8 \mathrm{m \ s^{-1}}$	

Mechanics

Kinematic equations of motion

Electricity

 $V = \frac{W}{Q}$

Resistance

 $R = \frac{V}{I}$

W = VIt

Potential difference

$$s = \frac{(u+v)t}{2}$$
$$v = u + at$$
$$s = ut + \frac{1}{2}at^{2}$$
$$v^{2} = u^{2} + 2as$$

Forces

Electrical power and energy

$$\Sigma F = ma$$

$$g = \frac{F}{m}$$

$$W = mg$$
moment of force = Fx
$$Electrical power and energy$$

$$P = VI$$

$$P = I^{2}R$$

$$P = \frac{V^{2}}{R}$$

Momentum

p = mv Resistivity

Work, energy and power

work, energy and power

$$\Delta W = F\Delta s \qquad \qquad R = \frac{\rho l}{A}$$

$$E_{k} = \frac{1}{2}mv^{2} \qquad \qquad Current$$

$$\Delta E_{grav} = mg\Delta h \qquad \qquad I = \frac{\Delta Q}{\Delta t}$$

$$P = \frac{E}{t} \qquad \qquad I = nqvA$$

$$P = \frac{W}{t}$$
efficiency = useful energy output
total energy input
useful power output

 $efficiency = \frac{\text{useful power output}}{\text{total power input}}$

Materials

Density

$$\rho = \frac{m}{V}$$

Stokes' law

 $F = 6\pi\eta rv$

Hooke's law

 $\Delta F = k \Delta x$

Young modulus

Stress
$$\sigma = \frac{F}{A}$$

Strain $\varepsilon = \frac{\Delta x}{x}$
 $E = \frac{\sigma}{\varepsilon}$

Elastic strain energy

$$\Delta E_{\rm el} = \frac{1}{2}F\Delta x$$

Waves and Particle Nature of Light

Wave speed

$$v = f\lambda$$

Speed of a transverse wave on a string

$$v = \sqrt{\frac{T}{\mu}}$$

Intensity of radiation

$$I = \frac{P}{A}$$

Power of a lens

$$P = \frac{1}{f}$$
$$P = P_1 + P_2 + P_3 + \dots$$

Thin lens equation

$$\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$$

Magnification for a lens

$$m = \frac{\text{image height}}{\text{object height}} = \frac{v}{u}$$

Diffraction grating

$$n\lambda = d\sin\theta$$

Refractive index

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$
$$n = \frac{c}{v}$$

Critical angle

$$\sin C = \frac{1}{n}$$

Photon model

$$E = hf$$

Einstein's photoelectric equation

$$hf = \phi + \frac{l}{2}mv_{\rm max}^2$$

de Broglie wavelength

$$\lambda = \frac{h}{p}$$

BLANK PAGE