June 2006
6686 Statistics S4 Mark Scheme

Question
Number
3. $(D=$ Without Solar heating - with Solver heating $)$
(a) $H_{0}: \mu_{3}=0$

$$
H_{1}: \mu D>0
$$

$$
d: \quad 6,-3,7,-2,-8,6,5,11,5
$$

$$
\bar{d}=3, \quad S_{d}=6 \quad 6 \quad\left(=\sqrt{\frac{369-9 \times 3^{2}}{8}}\right) \quad\left(\frac{\varepsilon_{d}}{9} M 1\right), M 1, M 1
$$

$$
t_{8}=\frac{3-0}{6 / \sqrt{9}}=1.5
$$

$$
\begin{equation*}
t_{8}(5 \% \text { Hail c.v. })=1.860 \tag{8}
\end{equation*}
$$

Not significant - insufficient evidexe (that solar heating has) decrease A(S) weekly fuel consumption.
(b) Difference in weekly fuel consumption is nomally distributed.
4. (a) $\quad\left(H_{0}: \sigma_{R}^{2}=\sigma_{0}^{2}\right.$

$$
H_{1}: \sigma_{n}^{2} \neq \sigma_{a}^{2}
$$

$$
\begin{aligned}
& \frac{S_{A}{ }^{2}}{S_{Q^{2}}}=\frac{0.721^{2}}{0.572^{2}}=1.588 \mathrm{C} \\
& F_{8,9}(570) \text { c.v. }[=1022 \mathrm{kin}]=3.23
\end{aligned}
$$

Not signitinat, can assume variances are equal. (accept $\sigma_{1}^{2}=\sigma_{B}{ }^{2}$)
(6)

(c) ± 0.7 is outside interval
\therefore manager need not be concerned
(allow if 0.7 inside)

$$
\begin{align*}
& S_{p}^{2}=\frac{8 \times 0.721^{2}+9 \times 0.572^{2}}{8+9}=0.41784 \cdots \\
& t_{17} \text { (2.57.) cv. }=2.110 \\
& 95 \% \text { CI }=\bar{x}_{B}-\bar{x}_{A} \pm 2.110 \times s_{P} \times \sqrt{\frac{1}{9}+\frac{1}{10}} \\
& =0.02 \pm 2.110 \times \sqrt{0.417 \ldots} \times \sqrt{\frac{1}{9}+\frac{1}{10}} \\
& =(-0.6066 \ldots, 0.6466 \ldots) \quad \text { Awe }(-0.607,0.647)^{A 1}, A 1_{1} \tag{7}
\end{align*}
$$

(b) $r=P\left(x_{2} \geqslant 9 \mid x_{2} P_{0}(9)=1-P\left(X_{2} \leq 8\right)=1-0.4557=0.54(43)^{(A-10 k+7)} M_{1}, A_{1}\right.$
(c) $Y_{1}=$ no. of defects in $10 \mathrm{~m} \quad Y_{1} \sim P_{0}(3) \quad$ Useof $P_{0}(3)$ to aid $P(Y \geqslant d \mathrm{~d}) \mathrm{MI}$

Require smallest c so that $P\left(Y_{1} \geqslant c\right)<0.10$. Tables $Y_{1} \geqslant 6$ A1 (2)
(d) Sije $=P\left(Y_{1} \geqslant 6\right)=1-P\left(Y_{1} \leqslant 5\right)=1-0.9161=0.0839 \quad$ B1 (1)
(e) $s=1-P\left(y_{2} \leq 5 \mid Y_{2} \sim P_{0}(8)\right),=1-0.1912=0.808 s$ (Aneto.81) M1, $A 1$ (2)
(f) See graph
(g) (i) $0.62 \sim 0.67$
(ii) Test I is mare powertul
(h) Test 2 has higher P(Type I error) Gut cont of this in low Tat 2 is more poorthal for $\lambda<0.7$ and $\lambda>0.7$ is rare
6. (a) $E\left(x^{n}\right)=\int_{0}^{t} x^{n} \frac{1}{t} d x=\left[\frac{x^{n+1}}{t(n+1)}\right]_{0}^{t}=\left(\frac{t^{n+1}}{t(n+1)}-0\right)=\frac{t^{n}}{n+1}$.
(b) $\left(E(x)=\frac{t}{2}\right) \frac{E(s)=k E(x) E(y)}{\Rightarrow k=4},=k \cdot \frac{t^{2}}{4}$

$$
E(s)=t^{2}
$$

$$
\begin{equation*}
\Rightarrow \quad k=4 \tag{3}
\end{equation*}
$$

(c)

$$
\begin{align*}
E(s) & =E \\
\operatorname{Var}(x y) & =E\left(x^{2}\right) E\left(y^{2}\right)-[E(x y)]^{2} \tag{3}\\
& =\frac{t^{2}}{3} \times \frac{t^{2}}{3}-\left(\frac{t^{2}}{4}\right)^{2}=\left\{\frac{7 t^{4}}{144}\right\} \tag{3}\\
\operatorname{Var}(s) & =k^{2} \operatorname{Var}(x y)=\frac{16 \times \frac{7 t^{4}}{144}=\frac{7 t^{4}}{9}}{}
\end{align*}
$$

(d) $E(u)=t^{2} \Rightarrow 2 E\left(x^{2}\right) q=t^{2}, \Rightarrow \frac{2 t^{2}}{3} q=t^{2}, \Rightarrow q=\frac{3}{2}$
(e) $\operatorname{Var}(u)=q^{2}\left[\operatorname{Var}\left(x^{2}\right)+\operatorname{Var}\left(y^{2}\right)\right]=2 q^{2} \operatorname{Var}\left(x^{2}\right)$

$$
\begin{align*}
& \operatorname{Var}(u)=q\left(V_{\text {ar }}\left(x^{2}\right)\right. \tag{3}\\
& \left.\operatorname{Var}\left(x^{2}\right)=E\left(x^{4}\right)-\left[E\left(x^{2}\right)\right]^{2}=\frac{t^{4}}{5}-\left(\frac{t^{2}}{3}\right)^{2}=\left(\frac{4}{45} t^{4}\right)\right)
\end{align*}
$$

(f) $\frac{2}{5}<\frac{7}{9} \quad \therefore$ Uisbetter \because smaller variance
(9) Using u estimate is: $\frac{3}{2}\left(2^{2}+3^{2}\right)=\frac{3}{2} \times 13=\frac{39}{2}$ or 19.5
HI

$$
\begin{equation*}
\operatorname{Var}(u)=2 \times \frac{9}{4} \times \frac{4}{45} t^{4}=\frac{2}{5} t^{4} \tag{1}
\end{equation*}
$$

