edexcel 쁓

Mark Scheme (Results)
Summer 2014

Pearson Edexcel GCE in Further Pure Mathematics FP2
(6668/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

```
www.edexcel.com/contactus
```


Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014
Publications Code UA038873
All the material in this publication is copyright
© Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATI CS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- $\boldsymbol{*}$ The answer is printed on the paper
- \quad The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$\left(x^{2}+b x+c\right)=(x+p)(x+q)$, where $|p q|=|c|$, leading to $x=\ldots$
$\left(a x^{2}+b x+c\right)=(m x+p)(n x+q)$, where $|p q|=|c|$ and $|m n|=|a|$, leading to $\mathrm{x}=\ldots$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving $x^{2}+b x+c=0:\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c=0, \quad q \neq 0$, leading to $x=\ldots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $\left(x^{n} \rightarrow x^{n-1}\right)$

2. I ntegration

Power of at least one term increased by $1 .\left(x^{n} \rightarrow x^{n+1}\right)$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

Method mark for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Question Number	Scheme		Marks
1.(a)	$\frac{2}{(r+2)(r+4)}=\frac{1}{r+2}-\frac{1}{r+4}$	Correct partial fractions. Can be seen in (b) - give B1 for that.	B1 (1)
(b)	$\sum_{r=1}^{n} \frac{2}{(r+2)(r+4)}=\sum_{r=1}^{n}\left(\frac{1}{r+2}-\frac{1}{r+4}\right)$		
	$\begin{aligned} & =\frac{1}{3}-\frac{1}{5}+\frac{1}{4}-\frac{1}{6}+\ldots \ldots \ldots . \\ & +\frac{1}{n+1}-\frac{1}{n+3}+\frac{1}{n+2}-\frac{1}{n+4} \end{aligned}$	Attempts at least the first 2 terms and at least the last 2 terms as shown.(May be implied by later work) Must start at 1 and end at n	M1
	$=\frac{1}{3}+\frac{1}{4}-\frac{1}{n+3}-\frac{1}{n+4}$	M1: Identifies their four fractions that do not cancel. If all terms are positive this mark is lost.	M1A1
		A1: Correct four fractions	
	$=\frac{7}{12}-\frac{1}{n+3}-\frac{1}{n+4}$		
	$\begin{aligned} & =\frac{7(n+3)(n+4)-12(n+4)-12(n+3)}{12(n+3)(n+4)} \\ & =\frac{7 n^{2}+49 n+84-12 n-48-12 n-36}{12(n+3)(n+4)} \end{aligned}$	Attempt to combine at least 3 fractions, 2 of which have a function of n in the denominator and expands the numerator. As a minimim, the product of 2 linear factors must be expanded in the numerator.	M1
	$=\frac{n(7 n+25)}{12(n+3)(n+4)} *$	cso Must be factorised. If worked with r instead of n throughout, deduct last mark only.	A1 (5)
			Total 6
(b) Way 2	$\frac{7}{12}-\left(\frac{1}{n+3}+\frac{1}{n+4}\right)$		
	$=\frac{7}{12}-\left(\frac{n+4+n+3}{(n+3)(n+4)}\right)$		
	$=\frac{7(n+3)(n+4)-24 n-84}{12(n+3)(n+4)}$		
	$=\frac{7 n^{2}+49 n+84-24 n-84}{12(n+3)(n+4)}$	Attempt to combine at least 3 fractions, 2 of which have a function of n in the denominator and expands the numerator. Min as above	M1
	$=\frac{n(7 n+25)}{12(n+3)(n+4)} *$	cso	A1

Question Number	Scheme	Marks	
2.	$3 x^{2}-19 x+20 \mid<2 x+2$		
	$3 x^{2}-19 x+20=2 x+2$ $\Rightarrow 3 x^{2}-21 x+18=0 \Rightarrow x=.$.	$3 x^{2}-19 x+20=2 x+2$ and attempt to solve correctly May be solved as an inequality	M1
	$x=1, \quad x=6$	Both (ie critical values seen)	A1
	$-\left(3 x^{2}-19 x+20\right)=2 x+2$ $\Rightarrow 3 x^{2}-17 x+22=0 \Rightarrow x=.$.	$-\left(3 x^{2}-19 x+20\right)=2 x+2$ and attempt to solve correctly May be solved as an inequality	M1
	$1<x<2, \quad \frac{11}{3}<x<6$	Both (critical values seen) Accept awrt 3.67	A1
	Must be strict inequalities. Accept awrt 3.67 A1 either correct, A1 both correct. But give A1A0 if both correct apart from S seen somewhere in the final answers. Give A1A0 if both correct and extra intervals seen	A1, A1	
			Total 6

If no algebra seen (implies a calculator solution) no marks.
With algebra:
M1 Squaring and reaching a quartic $=0$
M1 Attempt to factorise and obtain at least one solution for x. Coefficient of x^{4} and constant term correct for their quartic.
A1 Any 2 correct values
A1 All 4 correct values
Final 2 A marks as above
Accept set notation for the final 2 A marks. $x \in(1,2), x \in\left(\frac{11}{3}, 6\right)$ not $[1,2]$

By implicit differentiation: For the first 4 marks (rest as first method)

$$
y^{2}=8+\mathrm{e}^{x}
$$

M1A1 $2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=\mathrm{e}^{x} \quad$ M1A1 $\quad 2 \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=\mathrm{e}^{x}$

Question Number	Scheme		Marks
4.(a)	$\cos 6 \theta=\operatorname{Re}\left[(\cos \theta+i \sin \theta)^{6}\right]$	Ignore any imaginary parts included in their expansion	
	$(\cos \theta+\mathrm{i} \sin \theta)^{6}=c^{6}+6 c^{5} \mathrm{i} s+15 c^{4} \mathrm{i}^{2} s^{2}+20 c^{3} \mathrm{i}^{3} s^{3}+15 c^{2} \mathrm{i}^{4} s^{4}+6 c \mathrm{i}^{5} s^{5}+\mathrm{i}^{6} s^{6}$		M1
	Attempt to expand correctly or only show real terms (May be implied) Often seen with powers of i simplified. If is ${ }^{n}$ seen, but becomes $\mathrm{i}^{n} \mathrm{~s}^{n}$ (oe) later, deduct the final A mark of (a) even if no further errors.		
	$\cos 6 \theta=c^{6}-15 c^{4} s^{2}+15 c^{2} s^{4}-s^{6}$	M1: Attempt to identify real parts. These 2 M marks may be awarded together	M1A1
	$=c^{6}-15 c^{4}\left(1-c^{2}\right)+15 c^{2}\left(1-c^{2}\right)^{2}-\left(1-c^{2}\right)^{3}$		M1
	Correct use of $s^{2}=1-c^{2}$ in all their sine terms		
	$\cos 6 \theta=c^{6}-15 c^{4}+15 c^{6}+15 c^{2}\left(1-2 c^{2}+c^{4}\right)-\left(1-3 c^{2}+3 c^{4}-c^{6}\right)$		
	$\begin{array}{ll} \cos 6 \theta=32 \cos ^{6} \theta-48 \cos ^{4} \theta+18 \cos ^{2} \theta-1 * \quad \begin{array}{l} (\cos 6 \theta \text { must be seen } \\ \text { somewhere) } \end{array} \end{array}$		A1cso
			(5)
(b)	$\begin{aligned} & 64 \cos ^{6} \theta-96 \cos ^{4} \theta+36 \cos ^{2} \theta-3=0 \\ & \Rightarrow 2 \cos 6 \theta-1=0 \therefore \cos 6 \theta=\frac{1}{2} \quad \text { or } 0.5 \end{aligned}$	M1: Uses part (a) to obtain an equation in $\cos 6 \theta$	M1A1
		A1: Correct underlined equation	
	$\cos 6 \theta=\frac{1}{2} \Rightarrow(6 \theta=) \frac{\pi}{3}, \frac{5 \pi}{3}, \frac{7 \pi}{3}$		
	$\theta=\frac{\pi}{18}, \frac{5 \pi}{18}, \frac{7 \pi}{18}$	M1: Valid attempt to solve $\cos 6 \theta=k,-1 \leq k \leq 1$ leading to $\theta=\ldots \quad$ Can be degrees A1 2 correct answers A1 $3^{\text {rd }}$ correct answer with no extras within the range, ignore extras outside the range. Must be radians Answers in degrees or decimal answers score A0A0	$\begin{aligned} & \text { M1 } \\ & \text { A1A1 } \end{aligned}$
			(5)
			Total 10

Some may change the second form in (a) before proceeding to (b). If their changed form is correct, all marks for (b) are available; if their changed form is incorrect only M marks are available.

Question Number	Scheme		Marks
6.(a)	$w=\frac{4(1-i) z-8 i}{2(i-1) z-i}$		
	Method 1.........:Substituting $z=x+x i$	at the start	
	$w=\frac{4(1-i)(x+x i)-8 i}{2(i-1)(x+x i)-i}$	Substitutes for z	M1
	$w=\frac{4(x+x i-x i+x)-8 i}{2(x i-x-x-x i)-i}$	M1: Attempt to expand numerator and denominator A1. Correct expression	M1A1
	$\frac{8 i-8 x}{4 x+i} \cdot \frac{4 x-i}{4 x-i}$	M1: Multiplies numerator and denominator by the conjugate of their denom. No expansion needed A1: Uses correct conjugate (not ft)	M1A1
	$=\frac{-32 x^{2}+40 x i+8}{16 x^{2}+1}$	cso Award only if final answer is correct and follows correct working	B1
	NB: The B mark appears first on e-PEN but will be awarded last		
			(6)
	Method 2: if they proceed without $\boldsymbol{y}=\boldsymbol{x}$ (substitution may happen anywhere in the working)		
	$w=\frac{(1-i) z-8 \mathrm{i}}{2(-1+\mathrm{i})-\mathrm{i}}=\frac{4(1-\mathrm{i})(x+\mathrm{i} y)-8 \mathrm{i}}{2(-1+\mathrm{i})(x+\mathrm{i} y)-\mathrm{i}}$	Substitutes for z	M1
	$=\frac{4(1-\mathrm{i}) x+4(1-\mathrm{i}) \mathrm{i} y-8 \mathrm{i}}{2(-1+\mathrm{i}) x+2(-1+\mathrm{i}) \mathrm{i} y-\mathrm{i}}$	Attempt to expand numerator and denominator	M1
	$=\frac{4 x+4 y+(4 y-4 x-8) \mathrm{i}}{-2 x-2 y+(2 x-2 y-1) \mathrm{i}}$	Correct expression	A1
	$=\frac{4 x+4 y+(4 y-4 x-8) \mathrm{i}}{-2 x-2 y+(2 x-2 y-1) \mathrm{i}} \times \frac{-2 x-2 y-(2 x-2 y-1) \mathrm{i}}{-2 x-2 y-(2 x-2 y-1) \mathrm{i}}$ M1: Multiplies numerator and denominator by the conjugate of their denom. No expansion needed. A1: Uses correct conjugate. (not ft)		M1A1
	$=\frac{-16 x^{2}-16 y^{2}+12 y-12 x+8+(20 x+20 y) \mathrm{i}}{8 x^{2}+8 y^{2}-4 x+4 y+1}$		
	$=\frac{-32 x^{2}+40 x i+8}{16 x^{2}+1}$	cso Correct answer using $y=x$ Award only if final answer is correct and follows correct working	B1
	NB: The B mark appears first on e-PEN but will be awarded last		(6)

Question Number	Scheme		Marks
7(b)	$I=\mathrm{e}^{\int-\frac{3}{\mathrm{x}} \mathrm{~d} x}=\mathrm{e}^{-3 \ln x}=\frac{1}{x^{3}}$	M1: $\mathrm{e}^{\int \pm \frac{3}{x} \mathrm{dx}}$ and attempt integration. If not correct, $\ln x$ must be seen.	M1A1
		A1: $\frac{1}{x^{3}}$	
	$\frac{v}{x^{3}}=\int-6 \mathrm{~d} x=-6 x(+c)$	M1: $v \times$ their $I=\int-6 x^{3} \times$ their $I \mathrm{~d} x$	dM1A1
		A1: Correct equation with or without $+c$	
	$\frac{1}{y^{3} x^{3}}=-6 x+c \Rightarrow y^{3}=\ldots$.	Include the constant, then substitute for y and attempt to rearrange to $y^{3}=\ldots$. or y $=\ldots$. with the constant treated correctly	ddM1 dep on both M marks of (b)
	$y^{3}=\frac{1}{c x^{3}-6 x^{4}}$	Or equivalent	A1 (6) Total 11

Question Number	Scheme			Marks
	$r=1+\tan \theta$			
8.(a)	$\begin{gathered} x=r \cos \theta \Rightarrow x=(1+\tan \theta) \cos \theta \\ x=\cos \theta+\sin \theta, \frac{\mathrm{d} x}{\mathrm{~d} \theta}=\cos \theta-\sin \theta \end{gathered}$	States or implies $x=r \cos \theta$		M1
		M1: Attempt to differentiate$x=r \cos \theta \text { or } x=r \sin \theta$		M1A1
		A1: Correct derivative		
Alt for the 2 diff marks	$\frac{\mathrm{d} x}{\mathrm{~d} \theta}=\sec ^{2} \theta \cos \theta+(1+\tan \theta)(-\sin \theta)$	M1: Attempt to differentiate using product rule (dep on first M1) A1: correct (unsimplified) differentiation		
	$\frac{\mathrm{d} x}{\mathrm{~d} \theta}=0 \Rightarrow \tan \theta=1 \Rightarrow \theta=\ldots$	Set their derivative $=0$ and attempt to solve for θ (Dependent on second M mark above)		dM1
	$\theta=\frac{\pi}{4}, r=2$	Both		A1
	NB: Use of $x=r \sin \theta$ can score M0M1A0M1A0 max			(5)
(b)	$\int r^{2} \mathrm{~d} \theta=\int(1+\tan \theta)^{2} \mathrm{~d} \theta$	Use of $\int r^{2} \mathrm{~d} \theta$ and $r=1+\tan \theta$ No limits needed		M1
	$\begin{aligned} & (1+\tan \theta)^{2}=1+2 \tan \theta+\tan ^{2} \theta \\ & =1+2 \tan \theta+\sec ^{2} \theta-1 \end{aligned}$	Expands and uses the correct identity		M1
	$\int\left(2 \tan \theta+\sec ^{2} \theta\right) \mathrm{d} \theta$	Correct expression Need not be simplified, no limits needed.		A1
	$[2 \ln \sec \theta+\tan \theta]_{\left(\frac{\pi}{4}\right)}^{\left(\frac{\pi}{3}\right)}$	M1: Attempt to integrate - at least one trig term integrated. Dependent on the second M mark		dM1A1
		A1: Correct integration. Need not be simplified or include limits.		
	$R=\frac{1}{2}\left\{\left(2 \ln \sec \frac{\pi}{3}+\tan \frac{\pi}{3}\right)-\left(2 \ln \sec \frac{\pi}{4}+\tan \frac{\pi}{4}\right)\right\}$		Substitutes $\frac{\pi}{3}$ and their $\frac{\pi}{4}$ and subtracts (Dependent on 2 previous method marks in (b))	dM1
	$R=\frac{1}{2}\{\ln 2+\sqrt{3}-1\}$	Cao and cso		A1
				(7)
				Total 12

