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1. Solve  
 
 (a) 5x = 8, giving your answers to 3 significant figures, 

(3) 

(b) log 2 (x + 1) – log 2 x = log 2 7. 
(3) 

 
 

2. (a) Write down the first three terms, in ascending powers of x, of the binomial expansion 
of (1 + px)12, where p is a non-zero constant. 

(2) 
 

 Given that, in the expansion of (1 + px)12, the coefficient of x is (–q) and the coefficient of x2 
is 11q, 

 
 (b) find the value of p and the value of q. 

(4) 

 
3.  A river, running between parallel banks, is 20 m wide. The depth, y metres, of the river measured 

at a point x metres from one bank is given by the formula 
 

y = 
10

1
x(20 – x),      0  x  20. 

 
(a) Complete the table below, giving values of y to 3 decimal places. 
 

x 0 4 8 12 16 20 

y 0  2.771   0 

 (2) 

(b) Use the trapezium rule with all the values in the table to estimate the cross-sectional area of 
the river. 

(4) 
 

Given that the cross-sectional area is constant and that the river is flowing uniformly at 2 m s–1, 
 
(c) estimate, in m3, the volume of water flowing per minute, giving your answer to 3 significant 

figures. 
(2) 

 

N21140A 2 



4. The function f is defined by 
 

f: x 
2

15
2 


xx

x
 – 

2

3

x
,   x > 1. 

 

 (a) Show that f(x) = 
1

2

x
, x > 1. 

(4) 

 (b) Find f–1(x). 
(3) 

 
 The function g is defined by 
 

g: x  x2 + 5,   x  ℝ. 
 
  (b) Solve fg(x) = 4

1 . 

 (3) 
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5.       Figure 1 
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 Figure 1 shows part of the curve C with equation y = 
x

x 1
,   x > 0. 

 
 The finite region enclosed by C, the lines x = 1, x = 3 and the x-axis is rotated through 360 about 

the x-axis to generate a solid S. 
 

(a) Using integration, find the exact volume of S. 
(7) 

 
Figure 2 
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The tangent T to C at the point (1, 2) meets the x-axis at the point (3, 0). The shaded region R is 
bounded by C, the line x = 3 and T, as shown in Figure 2. 
 
(b) Using your answer to part (a), find the exact volume generated by R when it is rotated 

through 360 about the x-axis. 
(3) 
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6.            f(x) = 3ex – 2
1 ln x – 2,   x > 0. 

 
 (a) Differentiate to find f (x). 

(3) 
 

 The curve with equation y = f(x) has a turning point at P. The x-coordinate of P is . 
 
 (b) Show that  = 6

1 e–. 

(2) 
 

 The iterative formula 
 

xn + 1 = nxe6
1 ,   x0 = 1, 

 
 is used to find an approximate value for . 
 
 (c) Calculate the values of x1, x2, x3 and x4, giving your answers to 4 decimal places. 

(2) 

 (d) By considering the change of sign of f (x) in a suitable interval, prove that  = 0.1443 
correct to 4 decimal places. 

(2) 
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7.               Figure 1 
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 Figure 1 shows part of the graph of y = f(x), x  ℝ. The graph consists of two line segments that 
meet at the point (1, a), a < 0. One line meets the x-axis at (3, 0). The other line meets the x-axis 
at (–1, 0) and the y-axis at (0, b), b < 0. 

 
 In separate diagrams, sketch the graph with equation 
 

(a) y = f(x + 1), 
 (2) 

(b) y = f(x). 
(3) 

 
Indicate clearly on each sketch the coordinates of any points of intersection with the axes. 
 
Given that f(x) = x – 1 – 2, find 
 
(c) the value of a and the value of b, 

(2) 

(d) the value of x for which f(x) = 5x. 
(4) 
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8. (a) Given that 2 sin (  + 30) = cos (  + 60), find the exact value of tan  . 
(5) 

 
 (b) (i) Using the identity cos (A + B)  cos A cos B – sin A sin B, prove that 
 

cos 2A  1 – 2 sin2 A. 
(2) 

  (ii) Hence solve, for 0  x < 2 ,  
 

cos 2x  = sin x, 
 
   giving your answers in terms of . 

  (5) 

  (iii) Show that sin 2y tan y + cos 2y  1, for 0  y < 2
1 . 

(3) 

 
TOTAL FOR PAPER: 75 MARKS 
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